多目標(biāo)跟蹤中基于目標(biāo)威脅度評(píng)估的傳感器控制方法
doi: 10.11999/JEIT180212 cstr: 32379.14.JEIT180212
-
1.
蘭州理工大學(xué)電氣工程與信息工程學(xué)院 ??蘭州 ??730050
-
2.
西安交通大學(xué)電子與信息工程學(xué)院 ??西安 ??710049
-
3.
西安交通大學(xué)軟件學(xué)院 ??西安 ??710049
Threat Assessment Based Sensor Control for Multi-target Tracking
-
1.
School of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
-
2.
School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
-
3.
School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China
-
摘要: 該文基于隨機(jī)有限集的多目標(biāo)濾波器提出一種基于目標(biāo)威脅度評(píng)估的傳感器控制策略。首先,在部分可觀測(cè)馬爾科夫決策過(guò)程(POMDP)的理論框架下,給出基于信息論的傳感器控制一般方法。其次,結(jié)合目標(biāo)運(yùn)動(dòng)態(tài)勢(shì)對(duì)影響目標(biāo)威脅度的因素進(jìn)行分析。然后,基于粒子多目標(biāo)濾波器估計(jì)多目標(biāo)狀態(tài),依據(jù)多目標(biāo)運(yùn)動(dòng)態(tài)勢(shì)的評(píng)估研究建立多目標(biāo)威脅水平,并從多目標(biāo)分布特性中深入分析并提取出當(dāng)前時(shí)刻最大威脅度目標(biāo)的分布特性。最后,利用Rényi散度作為傳感器控制的評(píng)價(jià)指標(biāo),以最大威脅度目標(biāo)的信息增益最大化為準(zhǔn)則進(jìn)行最終控制方案的求解。仿真實(shí)驗(yàn)驗(yàn)證了該方法的實(shí)用性和有效性。
-
關(guān)鍵詞:
- 多目標(biāo)跟蹤 /
- 目標(biāo)威脅度 /
- 戰(zhàn)術(shù)重要性標(biāo)繪 /
- 傳感器控制 /
- 部分可觀測(cè)馬爾科夫決策過(guò)程
Abstract: This paper proposes a threat assessment based sensor control by using multi-target filter with random finite set. First, the general sensor control approach based on information theory is presented in the framework of Partially Observable Markov Decision Process (POMDP). Meanwhile, combined with target movement situation, the factors that affect the target threat degree are analyzed. Then, the multi-target state is estimated based on the particle multi-target filter, the multi-target threat level is established according to the multi-target motion situation, and the maximum threat target distribution characteristic is analyzed and extracted from the multi-target distribution characteristic. Finally, the Rényi divergence is used as the evaluation index in sensor control, and the final control policy is solved with the maximum information gain as the criterion. The simulation results verify the feasibility and effectiveness of the proposed method. -
MAHLER R P S. Advances in Statistical Multisource-Multitarget Information Fusion[M]. Norwood, MA: Artech House, 2014: 825–860. GOSTAR A K, HOSEINNEZHAD R, RATHNAYAKE T, et al. Constrained sensor control for labeled multi-Bernoulli filter using Cauchy-Schwarz divergence[J]. IEEE Signal Processing Letters, 2017, 24(9): 1313–1317 doi: 10.1109/LSP.2017.2723924 CHANGWEN Q and YOU H. A method of threat assessment using multiple attribute decision making[C]. The 6th IEEE International Conference on Signal Processing, Beijing, China, 2002: 1091–1095. doi: 10.1109/ICOSP.2002.1179979. MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Norwood, MA: Artech House, 2007: 655–667. 陳輝, 韓崇昭. 機(jī)動(dòng)多目標(biāo)跟蹤中的傳感器控制策略的研究[J]. 自動(dòng)化學(xué)報(bào), 2016, 42(4): 512–523 doi: 10.16383/j.aas.2016.c150529CHEN Hui and HAN Chongzhao. Sensor control strategy for maneuvering multi-target tracking[J]. Acta Automatica Sinica, 2016, 42(4): 512–523 doi: 10.16383/j.aas.2016.c150529 HOANG H G and VO B T. Sensor management for multi-target tracking via multi-Bernoulli filtering[J]. Automatica, 2014, 50(4): 1135–1142 doi: 10.1016/j.automatica.2014.02.007 RISTIC B and ARULAMPALAM S. Bernoulli particle filter with observer control for bearings-only tracking in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2405–2415 doi: 10.1109/TAES.2012.6237599 RISTIC B, VO B N, and CLARK D. A note on the reward function for PHD filters with sensor control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1521–1529 doi: 10.1109/TAES.2011.5751278 RISTIC B and VO B T. Sensor control for multi-object state space estimation using random finite sets[J]. Automatica, 2010, 46(11): 1812–1818 doi: 10.1016/j.automatica.2010.06.045 陳輝, 賀忠良, 劉備. 多目標(biāo)跟蹤中基于信息熵測(cè)度的傳感器控制方法[J]. 控制與決策, 2018, 33(2): 337–344 doi: 10.13195/j.kzyjc.2016.1424CHEN Hui, HE Zhongliang, and LIU Bei. Sensor control method based on information entropy measure for multi-target tracking[J]. Control and Decision, 2018, 33(2): 337–344 doi: 10.13195/j.kzyjc.2016.1424 VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224–1245 doi: 10.1109/TAES.2005.1561884 MAHLER R P S. Multitarget Sensor Management of Dispersed Mobile Sensors[M]. Singapore: World Scientific Publishing, 2004: 239–310. KATSILIERIS F, DRIESSEN H, and YAROVOY A. Threat-based sensor management for target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2772–2785 doi: 10.1109/TAES.2015.140052 EL-FALLAH A, ZATEZALO A, MAHLER R P S, et al. Unified Bayesian situation assessment sensor management[C]. Proceedings of SPIE Signal Processing, Sensor Fusion, and Target Recognition, Orlando, USA, 2005: 253–264. doi: 10.1117/12.605435. EL-FALLAH A, ZATEZALO A, MAHLER R P S, et al. Advancements in situation assessment sensor management[C]. Defense and Security Symposium. International Society for Optics and Photonics, FL, USA, 2006: 62350M. doi: 10.1117/12.665933. SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J].IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457 doi: 10.1109/TSP.2008.920469 -