一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

基于軟件定義網(wǎng)絡(luò)的服務(wù)器集群負(fù)載均衡技術(shù)研究

于天放 芮蘭蘭 邱雪松

于天放, 芮蘭蘭, 邱雪松. 基于軟件定義網(wǎng)絡(luò)的服務(wù)器集群負(fù)載均衡技術(shù)研究[J]. 電子與信息學(xué)報(bào), 2018, 40(12): 3028-3035. doi: 10.11999/JEIT180207
引用本文: 于天放, 芮蘭蘭, 邱雪松. 基于軟件定義網(wǎng)絡(luò)的服務(wù)器集群負(fù)載均衡技術(shù)研究[J]. 電子與信息學(xué)報(bào), 2018, 40(12): 3028-3035. doi: 10.11999/JEIT180207
Tianfang YU, Lanlan RUI, Xuesong QIU. Research on SDN-based Load Balancing Technology of Server Cluster[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3028-3035. doi: 10.11999/JEIT180207
Citation: Tianfang YU, Lanlan RUI, Xuesong QIU. Research on SDN-based Load Balancing Technology of Server Cluster[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3028-3035. doi: 10.11999/JEIT180207

基于軟件定義網(wǎng)絡(luò)的服務(wù)器集群負(fù)載均衡技術(shù)研究

doi: 10.11999/JEIT180207 cstr: 32379.14.JEIT180207
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61702048, 61302078)
詳細(xì)信息
    作者簡(jiǎn)介:

    于天放:男,1980年生,博士生,研究方向?yàn)檐浖x網(wǎng)絡(luò)

    芮蘭蘭:女,1979年生,博士,副教授,研究方向?yàn)榫W(wǎng)絡(luò)和業(yè)務(wù)質(zhì)量管理、泛在網(wǎng)絡(luò)、大數(shù)據(jù)等

    邱雪松:男,1973年生,博士,教授,研究方向?yàn)榫W(wǎng)絡(luò)管理與通信軟件

    通訊作者:

    于天放  m2015010@foxmail.com

  • 中圖分類(lèi)號(hào): TP393

Research on SDN-based Load Balancing Technology of Server Cluster

Funds: The National Natural Science Foundation of China (61702048, 61302078)
  • 摘要: 在當(dāng)前的網(wǎng)絡(luò)體系結(jié)構(gòu)下,采用硬件系統(tǒng)實(shí)現(xiàn)服務(wù)器集群負(fù)載均衡存在著獲取負(fù)載節(jié)點(diǎn)狀態(tài)困難、流量導(dǎo)向方式復(fù)雜等制約因素,不利于提升服務(wù)器集群的伸縮性和服務(wù)性能。針對(duì)此問(wèn)題,該文提出一種基于軟件定義網(wǎng)絡(luò)(SDN)的負(fù)載均衡機(jī)制(SDNLB)。該機(jī)制借助SDN具有的集中式控制和流量靈活調(diào)度優(yōu)勢(shì),利用SNMP協(xié)議和OpenFlow協(xié)議對(duì)服務(wù)器的運(yùn)行狀態(tài)和全局網(wǎng)絡(luò)負(fù)載信息進(jìn)行實(shí)時(shí)監(jiān)測(cè),并通過(guò)權(quán)值計(jì)算的方式選擇出權(quán)重最高的服務(wù)器作為流處理的目標(biāo)服務(wù)器,在此基礎(chǔ)上,采用最優(yōu)轉(zhuǎn)發(fā)路徑算法進(jìn)行流量調(diào)度,從而達(dá)到提高服務(wù)器集群的利用率與處理性能的目的。搭建了實(shí)驗(yàn)平臺(tái)對(duì)SDNLB的性能進(jìn)行仿真測(cè)試,實(shí)驗(yàn)結(jié)果表明:在相同的網(wǎng)絡(luò)負(fù)載條件下,SDNLB與其他負(fù)載均衡算法相比,能夠有效地降低服務(wù)器集群的負(fù)載,并能夠顯著提高網(wǎng)絡(luò)吞吐量和帶寬利用率,縮短流的完成時(shí)間和平均時(shí)延。
  • 圖  1  服務(wù)器性能監(jiān)測(cè)的主要過(guò)程

    圖  2  不同算法的網(wǎng)絡(luò)性能指標(biāo)對(duì)比

    圖  3  不同算法的流完成時(shí)間、平均時(shí)延對(duì)比

    表  1  服務(wù)器主要性能指標(biāo)

    指標(biāo)類(lèi)型 指標(biāo)值 狀態(tài)
    CPU利用率 非空閑任務(wù)占用比小于70% 良好
    70%~85% 過(guò)高
    90%以上 很差
    內(nèi)存訪問(wèn) 沒(méi)有頁(yè)交換 良好
    每個(gè)CPU每秒10個(gè)頁(yè)交換 過(guò)高
    更多的頁(yè)交換 很差
    磁盤(pán)I/O 活動(dòng)時(shí)間百分比小于30% 良好
    30%~45% 過(guò)高
    50%以上 很差
    下載: 導(dǎo)出CSV

    表  2  流轉(zhuǎn)發(fā)過(guò)程

     算法1 SDNLB最優(yōu)轉(zhuǎn)發(fā)路徑算法
     輸入:Topology_View /*當(dāng)前網(wǎng)絡(luò)拓?fù)湟晥D*/
        Link_Load /*網(wǎng)絡(luò)鏈路負(fù)載信息*/
        Target-Server /*目標(biāo)服務(wù)器*/
        Flow /*新到達(dá)的流*/
     輸出:R /*最優(yōu)轉(zhuǎn)發(fā)路徑*/
     (1) implement logical loopless processing
     (2) destination=target-server
     (3) create a graph that meets bandwidth demand of flow
     (4) A=[ ]
     (5) A[0]= Dijkstra(graph, source, destination)
     (6) B=[ ]
     (7) for i: 1 to K do
     (8) for j: 0 to size(A[i –1])–1 do
     (9)  spur=A[i –1].node( j)
     (10)  root=A[i –1].nodes(0, j)
     (11)  for path in A do
     (12)   if root==path.nodes(0, j) do
     (13)    remove path.nodes(j, j+1)
     (14)   end if
     (15)  end for
     (16)  spurpath=Dijkstra(graph, spur, destination)
     (17)  entirepath=root+spurpath
     (18)  if entirepath not in B do
     (19)    B.add(entirepath)
     (20)  end if
     (21) recover those removed edges
     (22) end for
     (23) if B.length==0 do
     (24)  break
     (25) else do
     (26)   B.sort()
     (27)   A[i]=B[0]
     (28)   B.delete(B[0])
     (29) end if
     (30) end for
     (31) if A.length==1 do
     (32)  R=A[0]
     (33) else do
     (34) determine R by choosing a path from list A.Bandwidth utilization of the path should be minimum
     (35) end if
     (36) return R
    下載: 導(dǎo)出CSV

    表  4  服務(wù)器平均負(fù)載

    服務(wù)器編號(hào) 2 4 6 8 10 12 14 16
    SDNLB 0.71 0.71 0.70 0.71 0.68 0.69 0.73 0.72
    E-Dijkstra 0.75 0.74 0.75 0.76 0.74 0.74 0.76 0.77
    GFF 0.74 0.75 0.78 0.78 0.77 0.74 0.77 0.78
    ECMP 0.86 0.86 0.87 0.89 0.87 0.87 0.85 0.87
    下載: 導(dǎo)出CSV

    表  3  CPU平均利用率(%)

    服務(wù)器編號(hào) 2 4 6 8 10 12 14 16
    SDNLB 22.65 22.53 22.43 22.31 22.20 22.58 22.48 22.11
    E-Dijkstra 23.39 23.34 23.32 23.29 23.26 23.50 23.36 23.29
    GFF 23.40 23.46 23.45 23.48 23.46 23.37 23.34 23.54
    ECMP 23.79 23.70 23.66 23.60 23.59 23.75 23.68 23.56
    下載: 導(dǎo)出CSV
  • GHOMI E, RAHMANI A, and QADER N. Load-balancing algorithms in cloud computing: A survey[J]. Journal of Network and Computer Applications, 2017, 88(12): 50–71 doi: 10.1016/j.jnca.2017.04.007
    SHARMA G and BUSCH C. A load balanced directory for distributed shared memory objects[J]. Journal of Parallel and Distributed Computing, 2015, 78(4): 6–24 doi: 10.1016/j.jpdc.2015.02.002
    ILCHOL P, QIAO Baiyou, SHEN Muchuan, et al. An efficient load balancing approach for N-hierarchical web server cluster[J]. Wuhan University Journal of Natural Sciences, 2015, 20(6): 537–542 doi: 10.1007/s11859-015-1130-9
    YANG Juipin. Elastic load balancing using self-adaptive replication management[J]. IEEE Access, 2017, 5(99): 7495–7504 doi: 10.1109/ACCESS.2016.2631490
    SHEIKHI S and BABAMIR S. A predictive framework for load balancing clustered web servers[J]. The Journal of Supercomputing, 2016, 72(2): 588–611 doi: 10.1007/s11227-015-1584-8
    MAO Qilin and SHEN Weikang. A load balancing method based on SDN[C]. The 7th International Conference on Measuring Technology and Mechatronics Automation, Nanchang, China, 2015: 18–21.
    TRESTIAN R, KATRINIS K, and MUNTEAN G. OFLoad: An OpenFlow-based dynamic load balancing strategy for datacenter networks[J]. IEEE Transactions on Network and Service Management, 2017, 14(4): 792–803 doi: 10.1109/TNSM.2017.2758402
    李龍, 付斌章, 陳明宇, 等. Nimble: 一種適用于OpenFlow網(wǎng)絡(luò)的快速流調(diào)度策略[J]. 計(jì)算機(jī)學(xué)報(bào), 2015, 38(5): 1056–1068 doi: 10.3724/SP.J.1016.2015.01056

    LI Long, FU Binzhang, CHEN Mingyu, et al. Nimble: A fast flow scheduling strategy for OpenFlow networks[J]. Chinese Journal of Computers, 2015, 38(5): 1056–1068 doi: 10.3724/SP.J.1016.2015.01056
    AL-FARES M, RADHAKRISHNAN S, RAGHAVAN B, et al. Hedera: Dynamic flow scheduling for data center networks[C]. NSDI’10 Proceedings of the 7th USENIX conference on networked systems design and implementation, San Jose, USA, 2010: 281–296.
    蔡岳平, 王昌平. 軟件定義數(shù)據(jù)中心網(wǎng)絡(luò)混合路由機(jī)制[J]. 通信學(xué)報(bào), 2016, 37(4): 44–52 doi: 10.11959/j.issn.1000-436x.2016071

    CAI Yueping and WANG Changping. Software defined data center network with hybrid routing[J]. Journal on Communications, 2016, 37(4): 44–52 doi: 10.11959/j.issn.1000-436x.2016071
    覃匡宇, 黃傳河, 劉柯威, 等. 基于多路廣播樹(shù)的SDN多路徑路由算法[J]. 計(jì)算機(jī)科學(xué), 2018, 45(1): 211–215 doi: 10.11896/j.issn.1002-137X.2018.01.037

    TAN Kuangyu, HUANG Chuanhe, LIU Kewei, et al. Multipath routing algorithm in software defined networking based on multipath broadcast tree[J]. Computer Science, 2018, 45(1): 211–215 doi: 10.11896/j.issn.1002-137X.2018.01.037
    LIAO Lingxia and LEUNG VC. LLDP based link latency monitoring in software defined networks[C]. The 12th International Conference on Network and Service Management, Montreal, Canada, 2016: 330–335.
    RUBIN I and ZHANG Runhe. Max-min utility fair flow management for networks with route diversity[J]. International Journal of Network Management, 2010, 20(6): 361–381 doi: 10.1002/nem.740
    YEN J Y. Finding the K shortest loopless paths in a network[J]. Management Science, 1971, 17(11): 712–716 doi: 10.1287/mnsc.17.11.712
    JIANG J R, HUANG H W, LIAO J H, et al. Extending Dijkstra’s shortest path algorithm for software defined networking[C]. The 16th Asia-Pacific Network Operations and Management Symposium, Hsinchu, China, 2014: 1–4.
    ZHANG Zhe, BOCKELMAN B, CARDER D, et al. Lark: An effective approach for software-defined networking in high throughput computing clusters[J]. Future Generation Computer Systems, 2017, 72(7): 105–117 doi: 10.1016/j.future.2016.03.010
    CHEN Yingying, JAIN S, ADHIKARI V, et al. A first look at inter-data center traffic characteristics via Yahoo! datasets[C]. IEEE INFOCOM, Shanghai, China, 2011: 1620–1628.
  • 加載中
圖(3) / 表(4)
計(jì)量
  • 文章訪問(wèn)數(shù):  1847
  • HTML全文瀏覽量:  778
  • PDF下載量:  56
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-08-13
  • 網(wǎng)絡(luò)出版日期:  2018-08-22
  • 刊出日期:  2018-12-01

目錄

    /

    返回文章
    返回