一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于掩蓋效應(yīng)和梯度信息的無參考噪聲圖像質(zhì)量評(píng)價(jià)改進(jìn)算法

羅洪艷 朱子巖 林睿 林臻 廖彥劍

羅洪艷, 朱子巖, 林睿, 林臻, 廖彥劍. 基于掩蓋效應(yīng)和梯度信息的無參考噪聲圖像質(zhì)量評(píng)價(jià)改進(jìn)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(1): 210-218. doi: 10.11999/JEIT180195
引用本文: 羅洪艷, 朱子巖, 林睿, 林臻, 廖彥劍. 基于掩蓋效應(yīng)和梯度信息的無參考噪聲圖像質(zhì)量評(píng)價(jià)改進(jìn)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(1): 210-218. doi: 10.11999/JEIT180195
Hongyan LUO, Ziyan ZHU, Rui LIN, Zhen LIN, Yanjian LIAO. Improved No-reference Noisy Image Quality Assessment Based on Masking Effect and Gradient Information[J]. Journal of Electronics & Information Technology, 2019, 41(1): 210-218. doi: 10.11999/JEIT180195
Citation: Hongyan LUO, Ziyan ZHU, Rui LIN, Zhen LIN, Yanjian LIAO. Improved No-reference Noisy Image Quality Assessment Based on Masking Effect and Gradient Information[J]. Journal of Electronics & Information Technology, 2019, 41(1): 210-218. doi: 10.11999/JEIT180195

基于掩蓋效應(yīng)和梯度信息的無參考噪聲圖像質(zhì)量評(píng)價(jià)改進(jìn)算法

doi: 10.11999/JEIT180195 cstr: 32379.14.JEIT180195
基金項(xiàng)目: 科技部國家重點(diǎn)研發(fā)計(jì)劃(2016YFC0107113),重慶市重點(diǎn)產(chǎn)業(yè)共性關(guān)鍵技術(shù)創(chuàng)新專項(xiàng)(CSTC2015ZDCY-ZTZXX0002)
詳細(xì)信息
    作者簡介:

    羅洪艷:女,1976年生,博士,副教授,研究方向?yàn)獒t(yī)學(xué)圖像處理

    朱子巖:男,1993年生,碩士生,研究方向?yàn)閳D像質(zhì)量評(píng)價(jià)、數(shù)字全息成像

    林睿:女,1995年生,碩士生,研究方向?yàn)閳D像質(zhì)量評(píng)價(jià)、數(shù)字全息成像

    林臻:女,1995年生,碩士生,研究方向?yàn)閳D像質(zhì)量評(píng)價(jià)、數(shù)字全息成像

    廖彥劍:男,1976年生,博士,副教授,研究方向?yàn)獒t(yī)療儀器及醫(yī)學(xué)圖像處理

    通訊作者:

    廖彥劍 azurelyj@163.com

  • 中圖分類號(hào): TP391

Improved No-reference Noisy Image Quality Assessment Based on Masking Effect and Gradient Information

Funds: The National Key R & D Program of Ministry of Science and Technology (2016YFC0107113), The Generality Critical Technology Innovation Special Items of Key Industry in Chongqing (CSTC2015ZDCY-ZTZXX0002)
  • 摘要:

    針對(duì)目前大多數(shù)噪聲圖像質(zhì)量評(píng)價(jià)算法借助域變換或機(jī)器學(xué)習(xí)所帶來的運(yùn)算量大、訓(xùn)練過程繁復(fù)等弊端,以及依賴人工設(shè)置固定閾值存在普適性不佳的問題,該文改進(jìn)了一種基于掩蓋效應(yīng)的空域噪聲圖像質(zhì)量評(píng)價(jià)算法。首先依據(jù)Hosaka原理提出層遞進(jìn)的分塊規(guī)則,將圖像分成與其內(nèi)容頻率分布高低相符的不同尺寸的子塊并賦予相應(yīng)的掩蓋權(quán)值;然后通過提取像素點(diǎn)梯度信息,經(jīng)兩步檢噪實(shí)現(xiàn)子塊噪點(diǎn)甄別;再使用掩蓋權(quán)值對(duì)子塊噪聲污染指標(biāo)加權(quán)得到初步質(zhì)量評(píng)價(jià)結(jié)果;最終修正和歸一化后為整圖質(zhì)量評(píng)價(jià)結(jié)果——改進(jìn)的無參考峰值信噪比(MNRPSNR)。應(yīng)用該算法在LIVE和TID2008圖像質(zhì)量評(píng)價(jià)數(shù)據(jù)庫上對(duì)多種噪聲類型圖像進(jìn)行實(shí)驗(yàn),結(jié)果顯示其較目前主流評(píng)價(jià)算法保有很強(qiáng)競爭力,對(duì)傳統(tǒng)算法改進(jìn)效果顯著,與人眼主觀感受一致性高,普適于多種噪聲類型。

  • 圖  1  改進(jìn)算法主體框架

    圖  2  改進(jìn)算法動(dòng)態(tài)閾值與傳統(tǒng)算法固定閾值分塊結(jié)果

    表  1  數(shù)據(jù)庫信息及實(shí)驗(yàn)使用子集

    數(shù)據(jù)庫國家/機(jī)構(gòu)參考圖像數(shù)量主觀評(píng)價(jià)指標(biāo)所選失真類型損傷層級(jí)
    LIVE美國/德克薩斯州立大學(xué)29DMOS白噪聲(WN)6
    TID2008烏克蘭/國家航空航天大學(xué)
    意大利/羅馬大學(xué)
    芬蘭/坦佩雷理工大學(xué)
    25MOS加性高斯噪聲(AGN)5
    顏色通道加性噪聲(ANCC)
    空間相關(guān)噪聲(SCN)
    掩蔽噪聲(MN)
    高頻噪聲(HFN)
    脈沖噪聲(IMN)
    下載: 導(dǎo)出CSV

    表  2  改進(jìn)算法與不同檢噪閾值下傳統(tǒng)NRPSNR算法對(duì)monarch圖像組評(píng)價(jià)結(jié)果

    DMOSNRPSNRMNRPSNR
    Nth=10Nth=50Nth=100
    圖2(a1)0.00000058.3513869.7431279.0868490.0779
    圖2(a2)23.9427550.4551869.3139179.5171977.9929
    圖2(a3)28.4490547.5042869.0137179.7020276.7756
    圖2(a4)41.1695939.0309549.2887865.9513568.3129
    圖2(a5)49.0867536.4791243.0307852.7284065.3847
    圖2(a6)65.7302933.0634836.5205141.1789360.7793
    下載: 導(dǎo)出CSV

    表  3  MNRPSNR與相關(guān)算法特征及在LIVE數(shù)據(jù)庫測試性能指標(biāo)

    算法名稱是否有參考圖像是否需要訓(xùn)練是否需要域變換性能指標(biāo)
    PLCCSROCCRMSE
    PSNR0.90500.90108.4500
    SSIM0.97000.96903.9540
    BIQI小波0.95380.95108.4094
    LBIQ小波0.97610.97007.9100
    DIIVINE小波0.98800.98404.3100
    BLIINDS離散余弦0.91400.890011.2700
    BLIINDS-II離散余弦0.97990.9691N/A
    NIQE0.97730.9662N/A
    BRISQUE0.98510.9786N/A
    NRPSNR0.86810.890010.9133
    MNRPSNR0.97450.98134.9369
    下載: 導(dǎo)出CSV

    表  4  TID2008數(shù)據(jù)庫測試PLCC指標(biāo)比對(duì)

    VSNRIFCNQMUQINRPSNRMNRPSNR
    AGN0.75130.61470.73970.54070.64670.7922
    ANCC0.74890.56280.69350.49300.04020.7291
    SCN0.77000.65670.77570.55890.16240.5808
    MN0.77990.73090.75750.75150.79030.5164
    HFN0.88610.71990.91340.70590.92830.9005
    IMN0.62440.49500.74920.48290.64030.8214
    下載: 導(dǎo)出CSV

    表  5  TID2008數(shù)據(jù)庫測試SROCC指標(biāo)比對(duì)

    VSNRIFCNQMUQINRPSNRMNRPSNR
    AGN0.77450.62040.75920.53350.62760.7900
    ANCC0.77250.59210.72000.47980.08690.7115
    SCN0.78600.64030.79100.54720.04910.5786
    MN0.75550.73740.76240.72920.80180.5214
    HFN0.88700.74880.89520.68630.90390.8852
    IMN0.64600.53780.76660.49510.64950.8300
    下載: 導(dǎo)出CSV

    表  6  TID2008數(shù)據(jù)庫測試RMSE指標(biāo)比對(duì)

    VSNRIFCNQMUQINRPSNRMNRPSNR
    AGN0.40050.47830.41310.51120.46820.3746
    ANCC0.36460.44480.39420.48440.55940.3832
    SCN0.38780.46550.39240.50550.61340.5060
    MN0.37450.38440.38900.39550.36730.5133
    HFN0.42590.60690.36910.66710.35630.4161
    IMN0.40220.43660.34020.44830.39330.2948
    下載: 導(dǎo)出CSV

    表  7  MNRPSNR與相關(guān)算法在LIVE數(shù)據(jù)庫上運(yùn)行時(shí)間(s)

    算法名稱DIIVINEBLIINDS-IINRPSNRMNRPSNR
    平均單幅耗時(shí)149703.4510.10
    下載: 導(dǎo)出CSV
  • HADIZADEH H and VAN BAJIC I. Full-reference objective quality assessment of tone-mapped images[J]. IEEE Transactions on Multimedia, 2018, 20(2): 392–404. doi: 10.1109/TMM.2017.2740023
    MA Jian, AN Ping, SHEN Liquan, et al. Reduced-reference stereoscopic image quality assessment using natural scene statistics and structural degradation[J]. IEEE Access, 2018, 6: 2768–2780. doi: 10.1109/ACCESS.2017.2785282
    FANG Yuming, YAN Jiebin, LI Leida, et al. No reference quality assessment for screen content images with both local and global feature representation[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1600–1610. doi: 10.1109/TIP.2017.2781307
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    YE Peng and DAVID D. No-reference image quality assessment based on visual codebook[C]. IEEE International Conference on Image Processing, Brussels, Belgium 2011: 11–14.
    WAN Wenfei, WU Jinjian, XIE Xuemei, et al. A novel just noticeable difference model via orientation regularity in DCT domain[J]. IEEE Access, 2017, 5: 22953–22964. doi: 10.1109/ACCESS.2017.2699858
    MA Lin, WANG Xu, LIU Qiong, et al. Reorganized DCT-based image representation for reduced reference stereoscopic image quality assessment[J]. Neurocomputing, 2016, 215: 21–31. doi: 10.1016/j.neucom.2015.06.116
    SAAD M A, BOVIK A C, and CHARRIER C. A DCT statistics-based blind image quality index[J]. IEEE Signal Processing Letters, 2010, 17(6): 583–586. doi: 10.1109/LSP.2010.2045550
    SAAD M A, BOVIK A C, and CHARRIER C. Blind image quality assessment: A natural scene statistics approach in the DCT domain[J]. IEEE Transactions on Image Processing, 2012, 22(8): 3339–3352. doi: 10.1109/TIP.2012.2191563
    CHANDLER D M and HEMAMI S S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284–2298. doi: 10.1109/TIP.2007.901820
    QIN Ming, Lü Xiaoxin, CHEN Xiaohui, et al. Hybrid NSS features for no-reference image quality assessment[J]. IET Image Processing, 2017, 11(6): 443–449. doi: 10.1049/iet-ipr.2016.0411
    LI Leida, YAN Ya, LU Zhaolin, et al. No-reference quality assessment of deblurred images based on natural scene statistics[J]. IEEE Access, 2017, 5: 2163–2171. doi: 10.1109/ACCESS.2017.2661858
    YANG Guangyi, LIAO Yue, ZHANG Qingyi, et al. No-reference quality assessment of noise-distorted images based on frequency mapping[J]. IEEE Access, 2017, 5: 23146–23156. doi: 10.1109/ACCESS.2017.2764126
    ABDEL-HAMID L, EI-RAFEI A, and MICHELSON G. No-reference quality index for color retinal images[J]. Computers in Biology and Medicine, 2017, 90: 68–75. doi: 10.1016/j.compbiomed.2017.09.012
    MA Kede, LIU Wentao, ZHANG Kai, et al. End-to-end blind image quality assessment using deep neural networks[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1202–1213. doi: 10.1109/TIP.2017.2774045
    LIU Tsungjung and LIU Kuanhsien. No-reference image quality assessment by wide-perceptual-domain scorer ensemble method[J]. IEEE Transaction on Image Processing, 2018, 27(3): 1138–1151. doi: 10.1109/TIP.2017.2771422
    MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4659–4708. doi: 10.1109/TIP.2012.2214050
    MOORTHY A K and BOVIK A C. Blind image quality assessment: From natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3350–3364. doi: 10.1109/TIP.2011.2147325
    LIU Anmin and LIN Weisi. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1500–1512. doi: 10.1109/TIP.2011.2175935
    王正友, 肖文. 基于掩蓋效應(yīng)的無參考數(shù)字圖像質(zhì)量評(píng)價(jià)[J]. 計(jì)算機(jī)應(yīng)用, 2006, 26(12): 2838–2840.

    WANG Zhengyou and XIAO Wen. No-reference digital image quality evaluation based on perceptual masking[J]. Computer Applications, 2006, 26(12): 2838–2840.
    徐海勇, 郁梅, 駱挺, 等. 基于非負(fù)矩陣分解的彩色圖像質(zhì)量評(píng)價(jià)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 578–585. doi: 10.11999/JEIT150610

    XU Haiyong, YU Mei, LUO Ting, et al. A color image quality assessment method based on non-negative matrix factorization[J]. Journal of Electronics &Information Technology, 2016, 38(3): 578–585. doi: 10.11999/JEIT150610
    蔣平, 張建州. 基于局部最大梯度的無參考圖像質(zhì)量評(píng)價(jià)[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2587–2593. doi: 10.11999/JEIT141447

    JIANG Ping and ZHANG Jianzhou. No-reference image quality assessment based on local maximum gradient[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2587–2593. doi: 10.11999/JEIT141447
    SHEIKH H R, WANG Zhou, and CORMACK L. LIVE image quality assessment database, release 2 [EB/OL]. http://live.ece.utexass.edu/research/quality, 2005.
    PONOMARENKO N. Tampere image database 2008 TID2008, version 1.0[EB/OL]. http://www.ponomarenko.info/index.html, 2009.
    Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, Phase II VQEG [OL]. http://www.vqeg.org/, 2003.
    MOORTHY A K and BOVIK A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters, 2010, 17(5): 513–516. doi: 10.1109/LSP.2010.2043888
    TANG Huixuan, JOSHI N, and KAPOOR A. Learning a blind measure of perceptual image quality[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011: 305–312.
    MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a " completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726
    SHEIKH H R, BOVIK A C, and DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117–2128. doi: 10.1109/TIP.2005.859389
    DAMERA-VENKATA N, KITE T D, GEISLER W S, et al. Image quality assessment based on a degradation model[J]. IEEE Transactions on Image Processing, 2000, 9(4): 636–650. doi: 10.1109/83.841940
    WANG Zhou and BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81–84. doi: 10.1109/97.995823
  • 加載中
圖(2) / 表(7)
計(jì)量
  • 文章訪問數(shù):  1483
  • HTML全文瀏覽量:  764
  • PDF下載量:  80
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-08-13
  • 網(wǎng)絡(luò)出版日期:  2018-08-21
  • 刊出日期:  2019-01-01

目錄

    /

    返回文章
    返回