一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于信號分布混合假設(shè)檢驗(yàn)的Wi-Fi室內(nèi)定位方法

周牧 耿小龍 謝良波 田增山 衛(wèi)亞聰

周牧, 耿小龍, 謝良波, 田增山, 衛(wèi)亞聰. 基于信號分布混合假設(shè)檢驗(yàn)的Wi-Fi室內(nèi)定位方法[J]. 電子與信息學(xué)報, 2018, 40(12): 2868-2873. doi: 10.11999/JEIT180147
引用本文: 周牧, 耿小龍, 謝良波, 田增山, 衛(wèi)亞聰. 基于信號分布混合假設(shè)檢驗(yàn)的Wi-Fi室內(nèi)定位方法[J]. 電子與信息學(xué)報, 2018, 40(12): 2868-2873. doi: 10.11999/JEIT180147
Mu ZHOU, Xiaolong GENG, Liangbo XIE, Zengshan TIAN, Yacong WEI. Wi-Fi Indoor Localization Based on Hybrid Hypothesis Test of Signal Distribution[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2868-2873. doi: 10.11999/JEIT180147
Citation: Mu ZHOU, Xiaolong GENG, Liangbo XIE, Zengshan TIAN, Yacong WEI. Wi-Fi Indoor Localization Based on Hybrid Hypothesis Test of Signal Distribution[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2868-2873. doi: 10.11999/JEIT180147

基于信號分布混合假設(shè)檢驗(yàn)的Wi-Fi室內(nèi)定位方法

doi: 10.11999/JEIT180147 cstr: 32379.14.JEIT180147
基金項(xiàng)目: 國家自然科學(xué)基金(61771083, 61704015),長江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計劃基金(IRT1299),重慶市科委重點(diǎn)實(shí)驗(yàn)室專項(xiàng)經(jīng)費(fèi)基金,重慶市基礎(chǔ)與前沿研究計劃基金(cstc2017jcyjAX0380, cstc2015jcyjBX0065),重慶市高校優(yōu)秀成果轉(zhuǎn)化基金(KJZH17117),重慶市研究生科研創(chuàng)新項(xiàng)目(CYS17221),重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJ1704083)
詳細(xì)信息
    作者簡介:

    周牧:男,1984年生,教授,研究方向?yàn)闊o線定位與導(dǎo)航技術(shù)、信號偵察與檢測技術(shù)、凸優(yōu)化與深度學(xué)習(xí)理論等

    耿小龍:男,1993年生,碩士,研究方向?yàn)闊o線定位技術(shù)

    謝良波:男,1986年生,講師,研究方向?yàn)榈凸哪M/數(shù)字集成電路、低功耗SAR ADC、室內(nèi)定位技術(shù)等

    田增山:男,1968年生,教授,博士生導(dǎo)師,研究方向?yàn)橐苿油ㄐ?、個人通信、GPS及蜂窩網(wǎng)定位技術(shù)等

    衛(wèi)亞聰:女,1993年生,碩士,研究方向?yàn)闊o線定位技術(shù)、數(shù)值計算等

    通訊作者:

    耿小龍  343097884@qq.com

  • 1) 對于小樣基本情況,u′將近似服從Mann-Whitney分布。此時,利用Mann-Whitney U臨界值表可得相應(yīng)的決策值p
  • 中圖分類號: TN961

Wi-Fi Indoor Localization Based on Hybrid Hypothesis Test of Signal Distribution

Funds: The National Natural Science Foundation of China (61771083, 61704015), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Special Fund of Chongqing Key Laboratory (CSTC), The Fundamental and Frontier Research Project of Chongqing (cstc2017jcyjAX0380, cstc2015jcyjBX0065), The University Outstanding Achievement Transformation Project of Chongqing (KJZH17117), The Postgraduate Scientific Research and Innovation Project of Chongqing (CYS17221), The Scientific and Technological Research Foundation of Chongqing Municipal Education Commission (KJ1704083)
  • 摘要: Wi-Fi室內(nèi)定位技術(shù)是目前移動計算領(lǐng)域的研究熱點(diǎn)之一,而傳統(tǒng)位置指紋定位方法沒有考慮復(fù)雜室內(nèi)環(huán)境下Wi-Fi信號分布的多樣性問題,從而導(dǎo)致Wi-Fi室內(nèi)定位系統(tǒng)的魯棒性較差。為了解決這一問題,該文提出一種基于信號分布混合假設(shè)檢驗(yàn)的Wi-Fi室內(nèi)定位方法。首先根據(jù)Jarque-Bera(JB)檢驗(yàn)結(jié)果對各個參考點(diǎn)處的Wi-Fi信號分布進(jìn)行正態(tài)性評價;然后針對不同Wi-Fi信號分布特性,利用混合Mann-Whitney U檢驗(yàn)/T檢驗(yàn)方法構(gòu)造匹配參考點(diǎn)集合,以實(shí)現(xiàn)對目標(biāo)的區(qū)域定位;最后通過計算定位區(qū)域中匹配參考點(diǎn)的K近鄰(K-Nearest Neighbor, KNN),完成對目標(biāo)的位置坐標(biāo)估計。實(shí)驗(yàn)結(jié)果表明,所提方法相比于傳統(tǒng)Wi-Fi室內(nèi)定位方法具有更高的定位精度和更強(qiáng)的系統(tǒng)魯棒性。
  • 圖  1  實(shí)驗(yàn)環(huán)境結(jié)構(gòu)圖

    圖  2  各個參考點(diǎn)處信號分布正態(tài)性JB檢驗(yàn)結(jié)果

    圖  3  不同區(qū)域中測試點(diǎn)所對應(yīng)的區(qū)域匹配概率

    圖  5  不同方法的誤差累積概率分布比較

    圖  4  不同方法的平均定位誤差比較

  • EL-KAFRAWY K, YOUSSEF M, EL-KEYI A, et al. Propagation modeling for accurate indoor WLAN RSS-based localization[C]. IEEE Vehicular Technology Conference Fall, Ottawa, Canada, 2010: 1–5.
    YIN Feng, ZHAO Yuxin, GUNNARSSON F, et al. Received-signal-strength threshold optimization using Gaussian processes[J]. IEEE Transactions on Signal Processing, 2017, 65(8): 2164–2177 doi: 10.1109/TSP.2017.2655480
    GOMEZ A, SHI K, QUINTANA C, et al. A 50 Gb/s transparent indoor optical wireless communications link with an integrated localization and tracking system[J]. Journal of Lightwave Technology, 2016, 34(10): 2510–2517 doi: 10.1109/JLT.2016.2542158
    HONG K, LEE S K, and LEE K. Performance improvement in ZigBee-based home networks with coexisting WLANs[J]. Pervasive and Mobile Computing, 2015, 19(5): 156–166 doi: 10.1016/j.pmcj.2014.03.002
    MAALEK R and SADEGHPOUR F. Accuracy assessment of ultra-wide band technology in locating dynamic resources in indoor scenarios[J]. Automation in Construction, 2016, 63(3): 12–26 doi: 10.1016/j.autcon.2015.11.009
    劉洺辛, 孫建利. 基于能效的WLAN室內(nèi)定位系統(tǒng)模型設(shè)計與實(shí)現(xiàn)[J]. 儀器儀表學(xué)報, 2014, 35(5): 1169–1178 doi: 10.19650/j.cnki.cjsi.2014.05.029

    LIU Mingxin and SUN Jianli. Design and implementation of WLAN indoor positioning system model based on energy efficiency[J]. Chinese Journal of Scientific Instrument, 2014, 35(5): 1169–1178 doi: 10.19650/j.cnki.cjsi.2014.05.029
    吳楠, 王旭東, 胡晴晴. 基于多LED的高精度室內(nèi)可見光定位方法[J]. 電子與信息學(xué)報, 2015, 37(3): 727–732 doi: 10.11999/JEIT140725

    WU Nan, WANG Xudong, and HU Qingqing. Multiple LED based high accuracy indoor visible light positioning scheme[J].Journal of Electronics&Information Technology, 2015, 37(3): 727–732 doi: 10.11999/JEIT140725
    ALTINTAS B and SERIF T. Indoor location detection with a RSS-based short term memory technique (KNN-STM)[C]. IEEE International Conference on Pervasive Computing and Communications, Lugano, Switzerland, 2012: 794–798.
    VELDE S V D, ARORA G, VALLOZZI L, et al. Cooperative hybrid localization using Gaussian processes and belief propagation[C]. IEEE International Conference on Communication, London, United Kingdom, 2015: 785–790.
    KOVALEV M. Indoor positioning of mobile devices by combined Wi-Fi and GPS signals[C]. International Conference on Indoor Positioning and Indoor Navigation, Busan, Republic of Korea, 2015: 332–339.
    CAI Sheng, LIAO Weixian, LUO Changqing, et al. CRIL: An efficient online adaptive indoor localization system[J]. IEEE Transactions on Vehicular Technology, 2017, 66(5): 4148–4160 doi: 10.1109/TVT.2016.2597303
    BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. IEEE International Conference on Computer Communications, Tel Aviv, Israel, 2000: 775–784.
    ZHOU Mu, WEI Yacong, TIAN Zengshan, et al. Achieving cost-efficient indoor fingerprint localization on WLAN platform: a hypothetical test approach[J]. IEEE Access, 2017, 5(8): 15865–15874 doi: 10.1109/ACCESS.2017.2737651
    JARQUE C M and BERA A K. A test for normality of observations and regression residuals[J]. International Statistical Review, 1987, 55(2): 163–172 doi: 10.2307/1403192
    COWLES M and DAVIS C. On the origins of the .05 level of statistical significance[J]. American Psychologist, 1982, 37(5): 553–558 doi: 10.1037/0003-066X.37.5.553
    王星, 褚挺進(jìn). 非參數(shù)檢驗(yàn)[M]. 第2版, 北京: 清華大學(xué)出版社, 2014: 93–99.

    WANG Xing and ZHU Tingjin. Non-Parametric Statistics[M]. Second Edition, Beijing: Tsinghua University Press, 2014: 93–99.
    MANN H B and WHITNEY D R. On a test of whether one of two random variables is stochastically larger than the other[J]. Annals of Mathematical Statistics, 1947, 18(1): 50–60 doi: 10.1214/aoms/1177730491
    LIU Zhongpeng and LIU Lijuan. Bayesian optimization RSSI and indoor location algorithm of iterative least square[J]. International Journal of Smart Home, 2015, 9(6): 31–34 doi: 10.14257/ijsh.2015.9.6.04
  • 加載中
圖(5)
計量
  • 文章訪問數(shù):  1813
  • HTML全文瀏覽量:  845
  • PDF下載量:  137
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-02-05
  • 修回日期:  2018-06-29
  • 網(wǎng)絡(luò)出版日期:  2018-08-14
  • 刊出日期:  2018-12-01

目錄

    /

    返回文章
    返回