融合用戶信任度和相似度的基于核心用戶抽取的魯棒性推薦算法
doi: 10.11999/JEIT180142 cstr: 32379.14.JEIT180142
-
中南大學(xué)軟件學(xué)院 ??長沙 ??410075
Robust Recommendation Algorithm Based on Core User Extraction with User Trust and Similarity
-
School of Software, Central South University, Changsha 410075, China
-
摘要:
推薦系統(tǒng)可以方便地幫助人們做出決策,然而,目前很少有研究考慮到剔除不相關(guān)噪聲用戶的影響,保留少量核心用戶做推薦。該文提出基于信任關(guān)系和興趣相似度的核心用戶抽取的新方法。首先計(jì)算所有用戶對之間的信任度和興趣相似度并且排序,然后根據(jù)用戶在最近鄰列表中出現(xiàn)的頻率和位置權(quán)重兩種策略選擇候選核心用戶集合,最后利用用戶的推薦能力篩選出最終的核心用戶并且做推薦。實(shí)驗(yàn)表明利用核心用戶做推薦的有效性,并且證明了利用20%的核心用戶做推薦,可以達(dá)到超過90%的準(zhǔn)確性,而且利用核心用戶做推薦能很好地抵御托攻擊對推薦系統(tǒng)造成的負(fù)面影響。
-
關(guān)鍵詞:
- 推薦系統(tǒng) /
- 核心用戶 /
- 魯棒性 /
- 相似度 /
- 信任度
Abstract:Recommendation systems can help people make decisions conveniently. However, few studies consider the effect of removing irrelevant noise users and retaining a small number of core users to make recommendations. A new method of core user extraction is proposed based on trust relationship and interest similarity. First, all users trust and interest similarity between pairs are calculated and sorted, then according to the frequency and position weight users travel in the nearest neighbor in the list of two kinds of strategies for the selection of candidate core collection of users. Finally, according to the user’s ability the core users are sieved out. Experimental results show that the core user recommendation effectiveness, and verify that the core of user 20% can reach more than recommended accuracy of 90%, and through the use of core user recommendation the negative effects caused by the attacks on the recommendation system can be resisted.
-
Key words:
- Recommendation system /
- Core users /
- Robustness /
- Similarity /
- Trust
-
表 1 融合結(jié)果表
Au (按照信任度大小排序) Bu (按照相似度大小排序) Cu (按照Pu值大小排序) 序號 用戶ID 信任度 序號 用戶ID 相似度 序號 用戶ID Pu ($\alpha $=0.4) 1 user1 0.765210 1 user2 0.965210 1 user1 0.70 2 user4 0.582130 2 user5 0.882130 2 user2 0.60 3 user3 0.212420 3 user1 0.812420 3 user5 0.55 4 user5 0.200760 4 user3 0.700760 4 user3 0.35 5 user2 0.190855 5 user4 0.590855 5 user4 0.30 下載: 導(dǎo)出CSV
-
TAO Peng, WANG Wendong, GONG Xiangyang, et al. A graph indexing approach for content-based recommendation system[C]. IEEE International Conference on Multimedia & Information Technology, Kaifeng China, 2010: 93–97. 王玉斌, 孟祥武, 胡勛. 一種基于信息老化的協(xié)同過濾推薦算法[J]. 電子與信息學(xué)報(bào), 2013, 35(10): 2391–2396. doi: 10.3724/SP.J.1146.2012.01743WANG Yubin, MENG Xiangwu, and HU Xun. A collaborative filtering recommendation algorithm based on information aging[J]. Journal of Electronics &Information Technology, 2013, 35(10): 2391–2396. doi: 10.3724/SP.J.1146.2012.01743 王海艷, 張大印. 一種可信的基于協(xié)同過濾的服務(wù)選擇模型[J]. 電子與信息學(xué)報(bào), 2013, 35(2): 349–354. doi: 10.3724/SP.J.1146.2012.00946WANG Haiyan and ZHANG Dayin. A trusted service selection model based on collaborative filtering[J]. Journal of Electronics &Information Technology, 2013, 35(2): 349–354. doi: 10.3724/SP.J.1146.2012.00946 ADOMAVICIUS G and TUZHILIN A. Context-Aware Recommender Systems[M]. USA: Springer, 2015: 2175–2178. PANNIELLO U, TUZHILIN A, and GORGOGLIONE M. Comparing context-aware recommender systems in terms of accuracy and diversity[J]. User Modeling and User-Adapted Interaction, 2014, 24(1/2): 35–65. doi: 10.1007/s11257-012-9135-y ZENG Wei, ZENG An, LIU Hao, et al. Uncovering the information core in recommender systems[J]. Scientific Reports, 2014, 4: 6140–6148. doi: 10.1038/srep06140 徐風(fēng)苓, 孟祥武, 王立才. 基于移動用戶上下文相似度的協(xié)同過濾推薦算法[J]. 電子與信息學(xué)報(bào), 2011, 33(11): 2785–2789. doi: 10.3724/SP.J.1146.2011.00384XU Fengling, MENG Xiangwu, and WANG Licai. Collaborative filtering recommendation algorithm based on context similarity of mobile users[J]. Journal of Electronics &Information Technology, 2011, 33(11): 2785–2789. doi: 10.3724/SP.J.1146.2011.00384 LU Linyuan and LIU Weiping. Information filtering via preferential diffusion[J]. Physical Review E, 2011, 83(6): 066119. doi: 10.1103/PhysRevE.83.066119 ZHOU Tao, ZOLTáN K, LIU Jianguo, et al. Solving the apparent diversity-accuracy dilemma of recommender systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(10): 4511–4515. doi: 10.1073/pnas.1000488107 XU Fuqing, WANG Zhiwu, TANG Li, et al. A mass diffusion-based interpretation of the effect of total solids content on solid-state anaerobic digestion of cellulosic biomass[J]. Bioresource Technology, 2014, 167(3): 178–185. doi: 10.1016/j.biortech.2014.05.114 黃武漢, 孟祥武, 王立才. 移動通信網(wǎng)中基于用戶社會化關(guān)系挖掘的協(xié)同過濾算法[J]. 電子與信息學(xué)報(bào), 2011, 33(12): 3002–3007. doi: 10.3724/SP.J.1146.2011.00364HUANG Wuhan, MENG Xiangwu, and WANG Licai. Collaborative filtering algorithm based on user social relationship mining in mobile communication network[J]. Journal of Electronics &Information Technology, 2011, 33(12): 3002–3007. doi: 10.3724/SP.J.1146.2011.00364 CHANG Na, IRVAN M, and TERANO T. An item influence-centric algorithm for tecommender dystems[C]. 11th International Conference on Distributed Computing and Artificial Intelligence, Salamanca, Spain, 2014: 553–560. -