短階相干系數(shù)加權(quán)的平面波復(fù)合成像算法
doi: 10.11999/JEIT180120 cstr: 32379.14.JEIT180120
-
合肥工業(yè)大學(xué)生物醫(yī)學(xué)工程系 ??合肥 ??230009
Plane-wave Compounding with Short-lag Coherence Factor Weighting
-
Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
-
摘要: 相干平面波復(fù)合(CPWC)成像算法采用多個(gè)角度平面波成像結(jié)果直接疊加的方式進(jìn)行成像,具有速度快,質(zhì)量高等優(yōu)點(diǎn),CPWC成像直接疊加的成像方式,忽略了平面波成像結(jié)果之間的相干性。相干系數(shù)(CF)加權(quán)算法可以有效提高成像的分辨率和對比度,降低了背景成像質(zhì)量。該文提出了短階相干系數(shù)(SLCF)加權(quán)算法,該算法采用角度差異參數(shù)來確定相干系數(shù)的階數(shù),根據(jù)角度差異較小的平面波輸出計(jì)算相干系數(shù),對CPWC成像結(jié)果進(jìn)行加權(quán)成像。仿真和實(shí)驗(yàn)結(jié)果表明SLCF加權(quán)算法相對于傳統(tǒng)的CPWC成像算法,可以改善成像的橫向分辨率和對比度。相對CF和廣義相干系數(shù)(GCF)算法,SLCF可以提高對比度和背景成像質(zhì)量,而且運(yùn)算量更低。
-
關(guān)鍵詞:
- 超聲成像 /
- 相干平面波復(fù)合成像 /
- 短階相干系數(shù) /
- 角度差異參數(shù)
Abstract: The Coherent Plane-Wave Compounding (CPWC) algorithm is based on the recombination of several plane-waves with different steering angles, which can achieve high-quality images with high frame rate. However, CPWC ignores the coherence between the plane-wave imaging results. Coherence Factor (CF) weighted algorithm can effectively improve the imaging contrast and resolution, while it degrades the background speckle quality. A Short-Lag Coherence Factor (SLCF) algorithm for CPWC is proposed. SLCF uses the angular difference parameter to ascertain the order of the coherence factor and calculates the coherence factor for the plane-waves with small angular difference. Then, SLCF is utilized to weight CPWC to obtain the final images. Simulated and experimental results show that SLCF-weighted algorithm can improve the imaging quality in terms of lateral resolution and Contrast Ratio (CR), compared with CPWC. In addition, in comparison with CF and Generalized Coherence Factor (GCF) weighted algorithm, SLCF can achieve better background speckle quality and it has lower computational complexity. -
表 1 不同算法仿真點(diǎn)的橫向與縱向FWHM及仿真斑的CR, CNR和背景SNR
算法 橫向FWHM(mm) 縱向FWHM(mm) CR(dB) CNR SSNR CPWC 0.540 0.415 30.22\15.96 4.68\2.45 8.52\6.36 CF 0.443 0.414 38.69\23.02 4.02\2.25 4.37\2.56 GCF 0.495 0.413 40.64\24.28 5.15\2.60 5.57\2.96 SLCF(8%) 0.537 0.415 38.00\21.62 5.22\2.31 6.86\3.40 SLCF(18%) 0.530 0.415 39.86\23.45 5.31\2.46 6.25\3.15 SLCF(30%) 0.524 0.415 40.48\24.14 5.17\2.48 5.83\3.01 SLCF(40%) 0.516 0.415 40.29\24.46 4.89\2.50 5.45\2.93 下載: 導(dǎo)出CSV
表 2 不同算法實(shí)驗(yàn)點(diǎn)的橫向與縱向FWHM及實(shí)驗(yàn)斑的CR, CNR和背景SNR
算法 橫向?qū)挾?mm) 縱向?qū)挾?mm) CR(dB) CNR SSNR CPWC 0.550 0.554 24.39\10.16 3.76\1.61 7.50\5.38 CF 0.477 0.542 31.73\12.64 3.25\1.49 3.56\1.82 GCF 0.513 0.553 33.38\13.66 4.10\1.64 4.49\1.97 SLCF(8%) 0.546 0.550 30.20\15.82 3.84\1.89 5.57\2.96 SLCF(18%) 0.536 0.554 32.71\17.85 4.08\2.10 5.05\2.71 SLCF(30%) 0.522 0.555 33.63\18.54 4.06\2.17 4.71\2.61 SLCF(40%) 0.501 0.557 33.72\18.64 3.90\2.14 4.42\2.51 下載: 導(dǎo)出CSV
表 3 人體成像數(shù)據(jù)的CR, CNR和背景SNR
算法 CR(dB) CNR SSNR CPWC 26.33 2.45 3.68 CF 26.96 1.85 1.99 GCF 28.28 1.98 2.10 SLCF(8%) 29.84 2.39 2.79 SLCF(18%) 28.84 2.10 2.32 SLCF(30%) 28.23 1.94 2.11 SLCF(40%) 27.86 1.86 2.01 下載: 導(dǎo)出CSV
-
MONTALDO G, TANTER M, BERCOFF J, et al. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2009, 56(3): 489–506 doi: 10.1109/TUFFC.2009.1067 BERCOFF J, MONTALDO G, LOUPAS T, et al. Ultrafast compound Doppler imaging: Providing full blood flow characterization[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2011, 58(1): 134–147 doi: 10.1109/TUFFC.2011.1780 VITI J, VOS H J, DE JONG N, et al. Contrast detection efficacy for plane vs. focused wave transmission[C]. 2014 IEEE International on Ultrasonics Symposium (IUS), Chicago, USA, 2014: 1750–1753. SEBASTIEN S, HERVé L, OLIVIER B, et al. Experimental evaluation of spectral-based quantitative ultrasound imaging using plane wave compounding[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2014, 61(11): 1824–1834 doi: 10.1109/TUFFC.2014.006543 POREE J, GARCIA D, CHAYER B, et al. Non-invasive vascular elastography with plane strain incompressibility assumption using ultrafast coherent compound plane wave imaging[J]. IEEE Transactions on Medical Imaging, 2015, 34(12): 2618–2631 doi: 10.1109/TMI.2015.2450992 DENARIE B, TANGEN T A, EKROLL I K, et al. Coherent plane wave compounding for very high frame rate ultrasonography of rapidly moving targets[J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1265–1276 doi: 10.1109/TMI.2013.2255310 ZHAO Jinxin, WANG Yuanyuan, ZENG Xing, et al. Plane wave compounding based on a joint transmitting-receiving adaptive beamformer[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2015, 62(8): 1440–1452 doi: 10.1109/TUFFC.2014.006934 TOULEMONDE M, BASSET O, TORTOLI P, et al. Thomson’s multitaper approach combined with coherent plane-wave compounding to reduce speckle in ultrasound imaging[J]. Ultrasonics, 2015, 56: 390–398 doi: 10.1016/j.ultras.2014.09.006 GASSE M, MILLIOZ F, ROUX E, et al. High-quality plane wave compounding using convolutional neural networks[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2017, 64(10): 1637–1639 doi: 10.1109/TUFFC.2017.2736890 HOLLMAN K W, RIGBY K W, and O'DONNELL M. Coherence factor of speckle from a multi-row probe[C]. IEEE, Ultrasonics Symposium, Caesars Tahoe, USA, 1999: 1257–1260. NILSEN C C and HOLM S. Wiener beamforming and the coherence factor in ultrasound imaging[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2010, 57(6): 1329–1346 doi: 10.1109/TUFFC.2010.1553 YU Mingyue, LI Yang, MA Teng, et al. Intravascular ultrasound imaging with virtual source synthetic aperture (VSSA) focusing and coherence factor weighting[J]. IEEE Transactions on Medical Imaging, 2017, 36(10): 2171–2178 doi: 10.1109/TMI.2017.2723479 ZHAO Jinxin, WANG Jin, and WANG Yuanyuan. Synthetic aperture ultrasound imaging with classified aperture coherence factors[J]. Journal of Medical Imaging&Health Informatics, 2017, 7(5): 1013–1020 doi: 10.1166/jmihi.2017.21301013 LI Paichi and LI Menglin. Adaptive imaging using the generalized coherence factor[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2003, 50(2): 128–141. WEI G, WANG Y, and YU J. Ultrasound harmonic enhanced imaging using eigenspace-based coherence factor[J]. Ultrasonics, 2016, 72: 106–116 doi: 10.1016/j.ultras.2016.07.017 WANG Y H and LI P C. SNR-dependent coherence-based adaptive imaging for high-frame-rate ultrasonic and photoacoustic imaging[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2014, 61(8): 1419–1432 doi: 10.1109/TUFFC.2014.3051 LI Y L and DAHL J J. Angular coherence in ultrasound imaging: Theory and applications[J]. Journal of the Acoustical Society of America, 2017, 141(3): 1582–1594 doi: 10.1121/1.4976960 Plane-wave Imaging challenge in medical ultraSound[OL]. https://www.creatis.insa-lyon.fr/Challenge/IEEE_IUS_2016/, 2016. JENSEN J A. Field: A program for simulating ultrasound systems[J]. Medical&Biological Engineering&Computing, 1996, 34(1): 351–353. ZHAO Jinxin, WANG Yuanyuan, YU Jinhua, et al. Short-lag spatial coherence ultrasound imaging with adaptive synthetic transmit aperture focusing[J]. Ultrason Imaging, 2017, 39(4): 224–239 doi: 10.1177/0161734616688328 -