一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于迭代并行干擾消除的低復(fù)雜度大規(guī)模MIMO信號(hào)檢測(cè)算法

申濱 趙書鋒 金純

申濱, 趙書鋒, 金純. 基于迭代并行干擾消除的低復(fù)雜度大規(guī)模MIMO信號(hào)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2018, 40(12): 2970-2978. doi: 10.11999/JEIT180111
引用本文: 申濱, 趙書鋒, 金純. 基于迭代并行干擾消除的低復(fù)雜度大規(guī)模MIMO信號(hào)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2018, 40(12): 2970-2978. doi: 10.11999/JEIT180111
Bin SHEN, Shufeng ZHAO, Chun JIN. Low Complexity Iterative Parallel Interference Cancellation Detection Algorithms for Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2970-2978. doi: 10.11999/JEIT180111
Citation: Bin SHEN, Shufeng ZHAO, Chun JIN. Low Complexity Iterative Parallel Interference Cancellation Detection Algorithms for Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2970-2978. doi: 10.11999/JEIT180111

基于迭代并行干擾消除的低復(fù)雜度大規(guī)模MIMO信號(hào)檢測(cè)算法

doi: 10.11999/JEIT180111 cstr: 32379.14.JEIT180111
基金項(xiàng)目: 重慶市科委重點(diǎn)產(chǎn)業(yè)共性關(guān)鍵技術(shù)創(chuàng)新專項(xiàng)(cstc2015zdcy-ztzx40008)
詳細(xì)信息
    作者簡(jiǎn)介:

    申濱:男,1978年生,教授,研究方向?yàn)檎J(rèn)知無線電、大規(guī)模MIMO等

    趙書鋒:男,1991年生,碩士生,研究方向?yàn)榇笠?guī)模MIMO信號(hào)檢測(cè)

    金純:男,1966年生,教授,研究方向?yàn)闊o線通信信號(hào)處理、物聯(lián)網(wǎng)等

    通訊作者:

    申濱  shenbin@cqupt.edu.cn

  • 中圖分類號(hào): TN929.5

Low Complexity Iterative Parallel Interference Cancellation Detection Algorithms for Massive MIMO Systems

Funds: The Innovation Project of the Common Key Technology of Chongqing Science and Technology Industry (cstc2015zdcy-ztzx40008)
  • 摘要: 基于干擾消除思想該文提出一種適用于大規(guī)模MIMO系統(tǒng)上行鏈路的低復(fù)雜度迭代并行干擾消除算法,在算法實(shí)現(xiàn)中避免了線性檢測(cè)算法所需的高復(fù)雜度 $({\cal O}({K^3}))$ 矩陣求逆運(yùn)算,將復(fù)雜度保持在 $({\cal O}({K^2}))$ 。在此基礎(chǔ)上,引入噪聲預(yù)測(cè)機(jī)制,提出一種基于噪聲預(yù)測(cè)的迭代并行干擾消除算法,進(jìn)一步提高了硬判決檢測(cè)性能??紤]天線間殘留干擾,將干擾消除思想運(yùn)用到軟判決中,最后提出一種基于迭代并行干擾消除的低復(fù)雜度軟輸出信號(hào)檢測(cè)算法。仿真結(jié)果表明:提出的信號(hào)檢測(cè)方法的復(fù)雜度優(yōu)于MMSE檢測(cè)算法,經(jīng)過幾次簡(jiǎn)單的迭代,算法即快速收斂并獲得接近甚至優(yōu)于MMSE檢測(cè)算法的誤碼率性能。
  • 圖  1  算法復(fù)雜度對(duì)比

    圖  3  $128 \times 32$ MIMO系統(tǒng)下BER性能(硬判決)

    圖  2  $128 \times 16$ MIMO系統(tǒng)下BER性能(硬判決)

    圖  4  信道估計(jì)誤差下算法BER性能(硬判決)

    圖  6  $128 \times 16$ MIMO系統(tǒng)中各算法軟輸出BER性能

    圖  5  $128 \times 32$ MIMO系統(tǒng)中各算法軟輸出BER性能

    表  1  基于迭代并行干擾消除算法(IPIC)

     算法1 基于迭代并行干擾消除算法(IPIC)
     輸入: ${{H}},{{y}},{\sigma ^2},K,{T_{{\rm{iter}}}};$
     初始化:
     (1) ${{G}} = {{{H}}^{\rm{H}}}{{H}},{} = {{{H}}^{\rm{H}}}{{y}},{{\hat{ s}}^{(0)}} = {{{D}}^{ - 1}}{{{H}}^{\rm{H}}}$ ${{y}} = \{ \hat s_1^{(0)},\hat s_2^{(0)}, ·\!·\!· ,\hat s_K^{(0)}\} $
      For $t = 1:{T_{{\rm{iter}}}};$
       For $i = 1:K$;
     (2) 更新 $\hat s_i^{(t)} = \hat s_i^{(t - 1)} + \frac{{{b_i} - \displaystyle\sum\nolimits_{j = 1}^{i - 1} {{G_{ij}}} \hat s_j^{(t)} - \displaystyle\sum\nolimits_{j = i}^K {{G_{ij}}} \hat s_j^{(t - 1)}}}{{{G_{ii}}}}$
     (3) 更新 ${{\hat{ s}}^{(t)}} = {\left[ {\hat s_1^{(t)},\hat s_2^{(t)}, ·\!·\!· ,\hat s_{i - 1}^{(t)}}, {Q(\hat s_i^{(t)})}, {\hat s_{i + 1}^{(t - 1)},\hat s_{i + 2}^{(t - 1)}, ·\!·\!· ,\hat s_K^{(t - 1)}}\right]^{\rm{T}}}$
     (4)   $i = i + 1$
    end for
     (5)   $t = t + 1$
       end for
     輸出 ${\hat{ s}} = {{\hat{ s}}^{({T_{{\rm{iter}}}})}}$
    下載: 導(dǎo)出CSV

    表  2  基于噪聲預(yù)測(cè)的迭代并行干擾消除算法(NP-IPIC)

     算法2 基于噪聲預(yù)測(cè)的迭代并行干擾消除算法(NP-IPIC)
     輸入: ${{H}},{{y}},{\sigma ^2},K,{T_{{\rm{iter}}}};$
     初始化:
     (1) ${{G}} = {{{H}}^{\rm{H}}}{{H}},{} = {{{H}}^{\rm{H}}}{{y}}$, ${{D}} = {\rm{diag}}({{G}} + {\sigma ^2}{{{I}}_K})$
        ${{\hat{ s}}^{(0)}} = Q({{{D}}^{ - 1}}{{{H}}^{\rm{H}}}{{y}}) = \{ \hat s_1^{(0)},\hat s_2^{(0)}, ·\!·\!· ,\hat s_K^{(0)}\}$
     (2) 對(duì) ${{H}}$列范數(shù)進(jìn)行降序排序,
    $o = \arg {\rm{sort}}({\tau _1},{\tau _2}, ·\!·\!· ,{\tau _K}),\ {\tau _k} = \left\| {{{{h}}_k}} \right\|_2^2,\ \forall k = 1,2, ·\!·\!· ,K$
       For $t = 1:{T_{{\rm{iter}}}}$;
        For $i = 1:K$;
     (3) 更新
    $\hat s_{o(i)}^{(t)} = \hat s_{o(i)}^{(t - 1)} + \frac{{{b_{o(i)}} - \displaystyle\sum\limits_{j = 1}^{i - 1} {{G_{o(i)o(j)}}} \hat s_{o(j)}^{(t)} - \displaystyle\sum\limits_{j = i}^K {{G_{o(i)o(j)}}} \hat s_{o(j)}^{(t - 1)}}}{{{G_{o(i)o(i)}}}}$
     (4) 判斷 $i$是否等于1,如果為1,則計(jì)算 $\bar s_{o(1)}^{(t)} = Q\left(\hat s_{o(1)}^{(t)}\right)$, 噪聲
    采樣 $\hat n_{o(1)}^{(t)} = \hat s_{o(1)}^{(t)} - \bar s_{o(1)}^{(t)} = \hat s_{o(1)}^{(t)} - \mathbb{Q}\left(\bar s_{o(1)}^{(t)}\right)$, 如果 $i > 1$,跳過
    本步驟,執(zhí)行下一步;
     (5) 更新 ${\hat{ n}} = \frac{{{{a}}_{o(i - 1)}^{\rm{H}}}}{{{{\left\| {{{{a}}_{o(i - 1)}}} \right\|}^2}}}\hat n_{o(i - 1)}^{(t)}$
     (6) $\hat n_{o(i)}^{(t)} = {{{a}}_{o(i)}}{\hat{ n}}$, $\bar s_{o(i)}^{(t)} = Q\left(\hat s_{o(i)}^{(t)} - \hat n_{o(i)}^{(t)}\right)$
     (7) 更新
    ${{\hat{ s}}^{(t)}} = {[ {\hat s_{o(1)}^{(t)},\hat s_{o(2)}^{(t)}, ·\!·\!· ,\hat s_{o(i - 1)}^{(t)}}, {\bar s_{o(i)}^{(t)}}, {\hat s_{o(i + 1)}^{(t - 1)},\hat s_{o(i + 2)}^{(t - 1)}, ·\!·\!· ,\hat s_{o(K)}^{(t - 1)}}]^{\rm{T}}}$
     (8)    $i = i + 1$
        end for
     (9)   $t = t + 1$
       end for
     (10) 根據(jù) ${{\hat{ s}}^{({T_{{\rm{iter}}}})}}$中下標(biāo)進(jìn)行重新排序得到 ${{\hat{ s}}^{{\rm{final}}}}$
     輸出 ${\hat{ s}} = {{\hat{ s}}^{{\rm{final}}}}$
    下載: 導(dǎo)出CSV

    表  3  基于迭代并行干擾消除的軟輸出算法(S-IPIC)

     算法3 基于迭代并行干擾消除的軟輸出算法(S-IPIC)
     輸入: ${{H}},{{y}},{\sigma ^2},K,{T_{{\rm{iter}}}};$
     初始化:
     (1) ${G}={H}^{\rm H}{H}, ={H}^{\rm H}{y}$,
    ${{D}} = {\rm{diag}}({{G}} + {\sigma ^2}{{{I}}_K}) {{\hat{ s}}^{(0)}} = {{{D}}^{ - 1}}{{{H}}^{\rm{H}}}{{y}} = \{ \hat s_1^{(0)},\hat s_2^{(0)}, ·\!·\!· ,\hat s_K^{(0)}\} $
     (2) 估計(jì)方差
       For $i = 1:K;$
     (3) $V_i^{(0)} = \sum\limits_{{\alpha _n} \in {\cal{Q}}} \Bigr| {\alpha _n} - \hat s_i^{(0)}{\Bigr|^2}P({s_i} = {\alpha _n})$
       end for
       估計(jì)發(fā)送信號(hào)并計(jì)算NPI方差
       For $t = 1:{T_{{\rm{iter}}}};$
        For $i = 1:K;$
     (4) 更新
         $\hat s_i^{(t)} = {\rm{ }}\hat s_i^{(t - 1)} + \frac{{{b_i} - \displaystyle\sum\limits_{j = 1}^{i - 1} {{G_{ij}}} \hat s_j^{(t)} - \displaystyle\sum\limits_{j = i}^K {{G_{ij}}} \hat s_j^{(t - 1)}}}{{{G_{ii}}}}$
     (5) 更新 ${{\hat{ s}}^{(t)}} = {\left[ {\hat s_1^{(t)},\hat s_2^{(t)}, ·\!·\!· ,\hat s_{i - 1}^{(t)}}, {\hat s_i^{(t)}}, {\hat s_{i + 1}^{(t - 1)},\hat s_{i + 2}^{(t - 1)}, ·\!·\!· ,\hat s_K^{(t - 1)}}\right]^{\rm T}}$
     (6) 更新
         $V_i^{(t)} = \sum\limits_{{\alpha _n} \in {\cal{O}}} | {\alpha _n} - \hat s_i^{(t)}{|^2}P({s_i} = {\alpha _n})$
     (7) 計(jì)算等效信道增益和NPI方差
       ${\mu _i} = 1$,
       ${(\nu _i^{(t)})^2}{\rm{ }} = \frac{1}{{G_{ii}^2}}\left( {\sum\limits_{j = 1}^{i - 1} | {G_{ij}}{|^2}V_j^{(t)} + \sum\limits_{j = i + 1}^K | {G_{ij}}{|^2}V_j^{(t - 1)}} \right) + \frac{{{\sigma ^2}}}{{{G_{ii}}}}$
     (8) 計(jì)算SINR ${{\rm Y}_i} = {{\mu _i^2} / {{{(\nu _i^{(t)})}^2}}}$
     (9)    $i = i + 1$
        end for
     (10)   $t = t + 1$
       end for
     輸出
         ${L_{i,b}} = {{\rm Y} _i}\left( {\mathop {\min }\limits_{a \in {\cal{O}}_b^0} {{\left| {\frac{{\hat s_i^{(t)}}}{{{\mu _i}}} - a} \right|}^2} - \mathop {\min }\limits_{a' \in {\cal{O}}_b^1} {{\left| {\frac{{\hat s_i^{(t)}}}{{{\mu _i}}} - a'} \right|}^2}} \right)$
    下載: 導(dǎo)出CSV
  • MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600 doi: 10.1109/TWC.2010.092810.091092
    LU Lu, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742–758 doi: 10.1109/JSTSP.2014.2317671
    MUMTAZ S, MORGADO A, HUQ K M S, et al. A survey of 5G technologies: regulatory, standardization and industrial perspectives[J]. Digital Communications&Networks, 2017, 4(2): 87–97 doi: 10.1016/j.dcan.2017.09.010
    ARAúJO D C, MAKSYMYUK T, ALMEIDA A L F D, et al. Massive MIMO: Survey and future research topics[J]. IET Communications, 2016, 10(15): 1938–1946 doi: 10.1049/iet-com.2015.1091
    NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449 doi: 10.1109/TCOMM.2013.020413.110848
    曹海燕, 楊敬畏, 方昕, 等. 大規(guī)模MIMO系統(tǒng)中基于二對(duì)角矩陣分解的低復(fù)雜度檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2018, 40(2): 416–420 doi: 10.11999/JEIT170399

    CAO Haiyan, YANG Jingwei, FANG Xin, et al. Low complexity detection algorithm based on two-diagonal matrix decomposition in massive MIMO systems[J]. Journal of Electronics&Information Technology, 2018, 40(2): 416–420 doi: 10.11999/JEIT170399
    WU M, YIN B, VOSOUGHI A, et al. Approximate matrix inversion for high-throughput data detection in the large-scale MIMO uplink[C]. IEEE International Symposium on Circuits and Systems, Beijing, China 2013: 2155–2158.
    DATTA T, SRINIDHI N, CHOCKALINGAM A, et al. Random-restart reactive tabu search algorithm for detection in large-MIMO systems[J]. IEEE Communications Letters, 2010, 14(12): 1107–1109 doi: 10.1109/LCOMM.2010.101210.101587
    PEREIRA AA J and SAMPAIO-NETO R. A random-list based LAS algorithm for near-optimal detection in large-scale uplink multiuser MIMO systems[C]. WSA 2015; 19th International ITG Workshop on Smart Antennas, Ilmenau, Germany, 2015: 1–5.
    WU M, YIN B, WANG G, et al. Large-scale MIMO detection for 3GPP LTE: algorithms and FPGA implementations[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 916–929 doi: 10.1109/JSTSP.2014.2313021
    TANG C, LIU C, YUAN L, et al. High precision low complexity matrix inversion based on Newton iteration for data detection in the massive MIMO[J]. IEEE Communications Letters, 2016, 20(3): 490–493 doi: 10.1109/LCOMM.2015.2514281
    GAO Xinyu, DAI Linglong, YUEN C, et al. Low-complexity MMSE signal detection based on Richardson method for large-scale MIMO systems[C]. Vehicular Technology Conference, Vancouver, Canada, 2014: 1–5.
    DAI Linglong, GAO Xinyu, SU Xin, et al. Low-complexity soft-output signal detection based on gauss–seidel method for uplink multiuser large-scale MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10): 4839–4845 doi: 10.1109/TVT.2014.2370106
    QIN Xianbo, YAN Zhiting, and HE Guanghui. A near-optimal detection scheme based on joint steepest descent and jacobi method for uplink massive MIMO systems[J]. IEEE Communications Letters, 2016, 20(2): 276–279 doi: 10.1109/LCOMM.2015.2504506
    GAO Xinyu, DAI Linglong, HU Yuting, et al. Matrix inversion-less signal detection using SOR method for uplink large-scale MIMO systems[C]. Global Communications Conference, Austin, USA, 2014: 3291–3295.
    YIN B, WU M, CAVALLARO J R, et al. Conjugate gradient-based soft-output detection and precoding in massive MIMO systems[C]. Global Communications Conference, Austin, USA, 2014: 3696–3701.
    XUE Ye, ZHANG Chuan, ZHANG Shunqing, et al. Steepest descent method based soft-output detection for massive MIMO uplink[C]. IEEE International Workshop on Signal Processing Systems, Dallas, USA, 2016: 273–278.
    FOSCHINI G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[J]. Bell Labs Technical Journal, 1996, 1(2): 41–59 doi: 10.1002/bltj.2015
    FA R and LAMARE R C D. Multi-branch successive interference cancellation for MIMO spatial multiplexing systems: Design, analysis and adaptive implementation[J]. IET Communications, 2011, 5(4): 484–494 doi: 10.1049/iet-com.2009.0843
    LI P, LAMARE R C D, and FA R. Multiple feedback successive interference cancellation detection for multiuser MIMO systems[J]. IEEE Transactions on Wireless Communications, 2011, 10(8): 2432–2439 doi: 10.1109/TWC.2011.060811.101962
    MANDLOI M, HUSSAIN M A, and BHATIA V. Improved multiple feedback successive interference cancellation algorithms for near-optimal MIMO detection[J]. IET Communications, 2017, 11(1): 150–159 doi: 10.1049/iet-com.2016.0333
    MANDLOI M and BHATIA V. Low-complexity near-optimal iterative sequential detection for uplink massive MIMO systems[J]. IEEE Communications Letters, 2017, 21(3): 568–571 doi: 10.1109/LCOMM.2016.2637366
    倪興, 王曉湘, 杜娟. 一種新的基于噪聲預(yù)測(cè)的部分判決反饋MIMO接收算法[J]. 電子與信息學(xué)報(bào), 2008, 30(1): 52–54

    NI Xing, WANG Xiaoxiang, and DU Juan. A noise-predictive partial decision-feedback detection for MIMO systems[J]. Journal of Electronics&Information Technology, 2008, 30(1): 52–54
    WATERS D W and BARRY J R. Noise-predictive decision-feedback detection for multiple-input multiple-output channels[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1852–1859 doi: 10.1109/TSP.2005.845474
  • 加載中
圖(6) / 表(3)
計(jì)量
  • 文章訪問數(shù):  3120
  • HTML全文瀏覽量:  1181
  • PDF下載量:  93
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-01-25
  • 修回日期:  2018-05-29
  • 網(wǎng)絡(luò)出版日期:  2018-08-14
  • 刊出日期:  2018-12-01

目錄

    /

    返回文章
    返回