基于回波的多子帶SAR系統(tǒng)載頻誤差補償方法研究
doi: 10.11999/JEIT180079 cstr: 32379.14.JEIT180079
-
1.
上海交通大學電子信息與電氣工程學院 上海 200240
-
2.
中國科學院電子學研究所 北京 100190
Method for Frequency Error Compensation Based on Raw Data for SAR System with Bandwidth Synthesis
-
1.
School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
-
2.
Insititute of Electrics, Chinese Academy of Sciences, Beijing 100190, China
-
摘要: 為了提高SAR系統(tǒng)的分辨率,在距離向可以通過發(fā)射一系列不同載頻的窄帶信號,通過信號處理的方法實現(xiàn)帶寬合成,進而得到等效大帶寬信號對應(yīng)的分辨率。為有效實現(xiàn)帶寬合成,要求不同子帶回波的載頻步進值嚴格已知,這在某些實際應(yīng)用環(huán)境中,并不能總是滿足,因而需要從回波數(shù)據(jù)中直接估計步進值。該文提出一種基于子帶回波數(shù)據(jù)的載頻誤差估計與補償方法。該方法基于壓縮后子帶回波數(shù)據(jù)多普勒相位與載頻的關(guān)系,對子帶圖像進行干涉處理,提取差分相位,并利用差分相位沿方位向的冗余進行相干積累,獲得以實際載頻步進值為振蕩頻率的單頻信號,進而通過頻譜分析方法得到誤差頻率,并對子帶間相位誤差進行補償。通過該方法,能夠?qū)崿F(xiàn)子帶信號的相干合成,提升了SAR數(shù)據(jù)成像質(zhì)量。實驗數(shù)據(jù)的處理結(jié)果驗證了該方法的有效性。Abstract: To improve the resolution of the SAR system, radar bandwidth should be improved. By means of synthetic bandwidth, wide bandwidth can be achieved with less hardware complexity. For frequency band synthesis SAR system, frequency difference should be accurately known. However, in the real measurement situation, the frequency difference may drift and should be estimated based on the raw data. In this manuscript, an effective method is proposed to estimate the frequency difference error and compensate the phase error. Based on the relation between the interferometric phase of subband echoes and frequency difference, the frequency difference drift is estimated. The interferometry between subband images yields the interferometric image. It is observed that in the yielded image, phase varies with range and the slope is proportional to the frequency difference. Also, the phase is redundant along azimuth. Based on the redundancy along azimuth, a new vector is formed. The vector is a sinusoidal signal with the frequency value corresponding to the relative range shift. Frequency analysis yields the value of the frequency difference error. Based on the proposed method, the SAR image is improved. The effectiveness of the method is verified by processing the real SAR data.
-
RICHARDS M. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2005: 139–147. CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementation[M]. Norwood, MA: Artech House, 2005: 33–37. SCHIMPF H, WAHLEN A, and ESSEN H. High range resolution by means of synthetic bandwidth generated by frequency-stepped chirps[J]. Electronics Letters, 2003, 39(4): 1346–1348 doi: 10.1049/el:20030829 ESSEN H, SCHIMPF H, and WAHLEN A. Improvement of the millimeterwave SAR MEMPHIS for very high resolution[R]. FGAN-FHR Technical Report, Werthhoven, 2003. 王沛, 王翔宇, 李寧, 等. 超高分辨率機載SAR高精度子帶拼接與處理方法研究[J]. 電子與信息學報, 2017, 39(10): 2325–2331 doi: 10.11999/JEIT170093WANG Pei, WANG Xiangyu, LI Ning, et al. Investigation on high precision sub-band synthesizing and processing method for very-high-resolution airborne SAR[J]. Journal of Electronics&Information Technology, 2017, 39(10): 2325–2331 doi: 10.11999/JEIT170093 李光祚, 默迪, 王寧, 等. 一種新的高重頻寬帶相干激光雷達系統(tǒng)研究[J]. 電子與信息學報, 2018, 40(3): 525–531 doi: 10.11999/JEIT170479LI Guangzuo, MO Di, and WANG Ning, et al. A novel coherent ladar system with high repetition frequency and wide bandwidth[J]. Journal of Electronics&Information Technology, 2018, 40(3): 525–531 doi: 10.11999/JEIT170479 THOMPSON A A and MCLEOD I H. The RADARSAT-2 SAR processor[J]. Canadian Journal of Remote Sensing, 2004, 30(3): 336–344. WEHNER D R. High Resolution Radar[M]. Norwood, MA: Artech House, 1995. LOAD R T and INGGS M R. High resolution SAR processing using stepped-frequencies[C]. IEEE International Geoscience and Remote Sensing Symposium, Singapore, 1997: 490–492. INGGS M R, VANZYL M W, and KNIGHT A. A simulation of synthetic range profile radar[C]. IEEE South African Symposium on Communications and Signal Processing, Cape Town, South Africa, 1992: 1–16. WILKINSON A J, LORD R T, and INGGS M R. Stepped-frequency processing by reconstruction of target reflectivity spectrum[C]. IEEE South African Symposium on Communications and Signal Processing, Cape Town, South Africa, 1998: 101–104. LEE G, SUN W, SUN G, et al. A new estimation method for SAR frequency difference drift base on frequency band synthesis[C]. IET International Radar Conference, Xi'an, China, 2013: 1–6. CARRAR G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar Signal Processing Algorithms[M]. Norwood, Massachusetts, Artech House, 1995: 501–506. 保錚, 邢孟道, 王彤. 雷達成像技術(shù)[M]. 北京: 電子工業(yè)出版社, 2010: 204–206. -