彈性光網(wǎng)絡(luò)基于區(qū)分降級服務(wù)和自適應(yīng)調(diào)制的動態(tài)路由與頻譜分配算法
doi: 10.11999/JEIT180075 cstr: 32379.14.JEIT180075
-
大連海事大學(xué)信息科學(xué)技術(shù)學(xué)院 ??大連 ??116026
Dynamic Routing and Spectrum Assignment Algorithm Based on Differentiated Degraded-service and Adaptive Modulation in Elastic Optical Networks
-
College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
-
摘要:
面對高速發(fā)展的互聯(lián)網(wǎng)應(yīng)用,傳統(tǒng)的路由與頻譜分配(RSA)問題迎來新的挑戰(zhàn)。融合降級服務(wù)(DS)技術(shù)的彈性光網(wǎng)絡(luò)無疑為降低業(yè)務(wù)阻塞率,提高用戶體驗質(zhì)量(QoE)提供了新方向。該文首先針對頻譜資源的低效利用和DS導(dǎo)致的業(yè)務(wù)收益下降問題,建立以最小化頻譜消耗和最小化DS等級、頻次為聯(lián)合優(yōu)化目標(biāo)的RSA問題的混合整數(shù)線性規(guī)劃模型。隨后,提出一種基于區(qū)分DS和自適應(yīng)調(diào)制的動態(tài)RSA算法。該算法考慮業(yè)務(wù)等級的差異化,并整合自適應(yīng)調(diào)制和DS技術(shù)。同時,設(shè)計區(qū)分業(yè)務(wù)等級的DS損失函數(shù)及DS窗口選擇策略,為即將受阻業(yè)務(wù)分配理想的頻譜位置和資源。此外,設(shè)計考慮頻譜與收益均衡關(guān)系的網(wǎng)絡(luò)收益函數(shù),達(dá)到頻譜資源高效利用,減少降級影響,提升網(wǎng)絡(luò)收益的目的。最后,仿真驗證了所提算法在業(yè)務(wù)阻塞率和網(wǎng)絡(luò)收益等方面的優(yōu)勢。
-
關(guān)鍵詞:
- 彈性光網(wǎng)絡(luò) /
- 路由與頻譜分配 /
- 降級服務(wù) /
- 區(qū)分服務(wù) /
- 自適應(yīng)調(diào)制
Abstract:Oriented to the high-rapid development of Internet applications, new challenges are encountered by the conventional Routing and Spectrum Assignment (RSA). A new direction for the blocking rate reduction and the Quality of Experience (QoE) assurance is provided to the Elastic Optical Network (EON) integrated by Degraded Service (DS) technology. Due to the inefficiency of spectrum resources and the revenue decline caused by DS, a Mixed Integer Linear Programming (MILP) model is proposed with a joint objective that minimizes both spectrum consumption and the priorities and DS frequency of online services. A dynamic RSA algorithm based on differentiated DS and adaptive modulation is proposed, which considers service-priority differentiation, the adaptive modulation and DS technology. Meanwhile, DS loss function and DS window selection strategy are designed to differentiate service levels, and ideal spectrum location and resource are assigned for the impending blocked services. The network revenue function considering the relationship between spectrum and revenue balance is designed to achieve efficient utilization of spectrum resources, reduce the impact of degradation, and enhance network revenue. The simulation results verify the advantages of the proposed algorithm in terms of blocking rate, network profit, etc.
-
表 1 DRSA-DDAM算法偽代碼
算法 DRSA-DDAM 輸入: $\psi $, $G(N, E, C)$.
輸出: blocking rate, average slot/demand, net profit.
(1) for $\psi \ne \varnothing $ do
(2) $r \leftarrow \psi $. top(), block_num$ \leftarrow $0, slot_num$ \leftarrow $0,
success_num$ \leftarrow $0;
(3) $G \leftarrow G$ updated according to ${\left[ {U_k^r} \right]_{H \times \left| C \right|}}$ in Eq. 14;
(4) ${P_K} = \{ {p_k}\} \leftarrow K - {\rm{Shortest}}(G, r)$ and Eq. 13;
(5) if ${P_K} \!\ne\! \varnothing $ then ${\left[ {S_k^r} \right]_{1 \times \left| C \right|}} \leftarrow \{ {\left[ {U_k^r} \right]_{H \times \left| C \right|}}$ according to Eq. 15};
(6) for $\forall {p_k} \in {P_K}$ do search $B_{b, e}^k$ in ${p_k}$; $\varTheta .{\rm{push}}(B_{b, e}^k)$;
(7) end for
(8) end if
(9) if $\varTheta \ne \varnothing $ then
(10) for $\forall B_{b, e}^k \!\in\! \varTheta $ do $v_{b, e}^k \leftarrow $Eq. 17($B_{b, e}^k$), $\tau _{b, e}^k \leftarrow $Eq. 18($v_{b, e}^k$);
(11) end for
(12) else if $\varTheta = \varnothing $ then block $r$, block_num++; $\psi .$ pop();
break;
(13) end if
(14) $\varTheta \leftarrow \big\{ \varTheta , {\rm{descending\; order}}, \big({M_k}, \tau _{b, e}^k\big)\big\} $;
(15) if $\varTheta .{\rm{top}}().\tau _{b, e}^k \le 0$ then
(16) Serve-win$ \leftarrow $position[$\varTheta $. top()]; allocate resource to r;
(17) slot_num+= r. allocate(slot), success_num++;
(18) net profit+= r. profit; $\psi .$ pop(), break;
(19) else if $\varTheta .{\rm{top}}().\tau _{b, e}^k > 0$ then
(20) for $\forall B_{b, e}^k \in \varTheta $ do
(21) compare ${o_{r'}}$ for $r'$ in $\Big[b \!-\! \tau _{b, e}^k, b\Big) \!\cup\! \Big(e, e \!+\! \tau _{b, e}^k\Big]$ with ${o_r}$;
(22) if each ${o_{r'}} \ge {o_r}$ then remove $B_{b, e}^k$ from $\varTheta $; continue;
(23) else then calculate $\tau _{b, e}^{l, h}$ and $\tau _{b, e}^{r, h}$ of each h$ \in \{ {p_k}\} $;
(24) end if
(25) $\tau _{b, e}^l \leftarrow $Eq. 20 and $\tau _{b, e}^r \leftarrow $Eq. 21; $\gamma \leftarrow $Eq. 22$\left(\tau _{b, e}^l\right.$, $\left.\tau _{b, e}^r\right)$;
(26) end for
(27) if $\gamma \ne \varnothing $ then
(28) for $\forall B_{b, e}^k \in \gamma $ do $w_ {\rm{sum}}^{B_{b, e}^k} \leftarrow ${Eq. 23 and Eq. 24};
(29) end for
(30) ${w_{\min }} \leftarrow $Eq. 25($\gamma $); DS-win$ \leftarrow $place\Big[$B_{b, e}^k({w_{\min }})\Big]$;
(31) DS($r'$) for r; allocate resource for $r$;
net profit+=$r$. profit;
(32) slot_num+= $r$. allocate(slot), success_num++;
(33) else then block $r$, block_num++; break;
(34) end if
(35) end if
(36) end for
(37) return blocking rate$ \leftarrow $block_num/$\left| \psi \right|$, net profit and
average slot/demand$ \leftarrow $slot_num/success_num;下載: 導(dǎo)出CSV
表 2 調(diào)制模式與數(shù)據(jù)率和傳輸距離的關(guān)系
調(diào)制模式 BPSK QPSK 8QAM 16QAM 調(diào)制等級 2 4 8 16 Bit/符號 1 2 3 4 頻譜槽帶寬(GHz) 12.5 12.5 12.5 12.5 數(shù)據(jù)率(Gbps) 12.5 25.0 37.5 50.0 傳輸距離(km) 9600 4800 2400 1200 下載: 導(dǎo)出CSV
-
TALEBI S, ALAM F, KATIB I, et al. Spectrum management techniques for elastic optical networks: A survey[J]. Optical Switching and Networking, 2014, 13(9): 34–48. doi: 10.1016/j.osn.2014.02.003 劉煥淋, 杜君丹, 易鵬飛, 等. 彈性光網(wǎng)絡(luò)中面向可靠性的鏈路故障概率保護與保護資源重配置策略[J]. 電子與信息學(xué)報, 2017, 39(11): 2579–2586. doi: 10.11999/JEIT170150LIU Huanlin, DU Jundan, YI Pengfei, et al. Reliability-oriented links failure probability protection and backup reprovisioning strategy for elastic optical networks[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2579–2586. doi: 10.11999/JEIT170150 劉煥淋, 易鵬飛, 張明佳, 等. 最小故障風(fēng)險損失的彈性光網(wǎng)絡(luò)多鏈路故障概率保護策略[J]. 電子與信息學(xué)報, 2017, 39(8): 1819–1825. doi: 10.11999/JEIT161159LIU Huanlin, YI Pengfei, ZHANG Mmingjia, et al. Multi-link failure probability protection strategy based on minimum fault risk loss in elastic optical networks[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1819–1825. doi: 10.11999/JEIT161159 ZHU Ruijie, JUE J P, YOUSEFPOUR A, et al. Multi-path fragmentation-aware advance reservation provisioning in elastic optical networks[C]. IEEE Global Communications Conference, Washington, USA, 2017: 1–6. doi: 10.1109/GLOCOM.2016.7842011. LIU Huanlin, Lü Lei, CHEN Yong, et al. Fragmentation-avoiding spectrum assignment strategy based on spectrum partition for elastic optical networks[J]. IEEE Photonics Journal, 2017, 9(5): 1–13. doi: 10.1109/JPHOT.2017.2739750 鞠衛(wèi)國, 黃善國, 徐珍珍, 等. 面向頻譜融合的路由頻譜分配和碎片整理算法[J]. 光子學(xué)報, 2013, 42(8): 929–935. doi: 10.3788/gzxb20134208.0929JU Weiguo, HUANG Shanguo, XU Zhenzhen, et al. Spectrum fusion oriented routing and spectrum assignment algorithm and spectrum defragmentation algorithm[J]. Acta Photonica Sinica, 2013, 42(8): 929–935. doi: 10.3788/gzxb20134208.0929 TALEBI S and ROUSKAS G N. On distance-adaptive routing and spectrum assignment in mesh elastic optical networks[J]. IEEE/OSA Journal of Optical Communications and Networking, 2017, 9(5): 456–465. doi: 10.1364/JOCN.9.000456 ROBINSON M, MILOSAVLJEVIC M, KOURTESSIS P, et al. QoE based holistic traffic engineering in SDN enabled heterogeneous transport networks[C]. International Conference on Transparent Optical Networks, Girona, Spain, 2017: 1–4. doi: 10.1109/ICTON.2017.8024878. SAVAS S S, HABIB M F, TOMATORE M, et al. Network adaptability to disaster disruptions by exploiting degraded-service tolerance[J]. IEEE Communications Magazine, 2014, 52(12): 58–65. doi: 10.1109/MCOM.2014.6979953 SAVAS S S, HABIB M F, TOMATORE M, et al. Exploiting degraded-service tolerance to improve performance of telecom networks[C]. Optical Fiber Communications Conference and Exhibition, San Francisco, USA, 2014: 1–3. doi: 10.1364/OFC.2014.W2A.31. VADREVU C S K, WANG R, TORNATORE M, et al. Degraded service provisioning in mixed-line-rate WDM backbone networks using multipath routing[J]. IEEE/ACM Transactions on Networking, 2014, 22(3): 840–849. doi: 10.1109/TNET.2013.2259638 ZHONG Zhizhen, LI Jipu, HUA Nan, et al. On QoS-assured degraded provisioning in service-differentiated multi-layer elastic optical networks[C]. IEEE GLOBECOM, Washington, USA, 2016: 1–5. doi: 10.1109/GLOCOM.2016.7842043. YEN J Y. Finding the k shortest loopless paths in a network[J]. Management Science, 1971, 17(11): 712–716. doi: 10.1287/MNSC.17.11.712 GUO Hong, LI Yongcheng, LI Longfei, et al. Adaptive modulation and regeneration-aware routing and spectrum assignment in SBPP-based elastic optical Networks[J]. IEEE Photonics Journal, 2017, 9(2): 1–15. doi: 10.1109/JPHOT.2017.2685418 ZHU Zuqing, LU Wei, ZHANG Liang, et al. Dynamic service provisioning in elastic optical networks with hybrid single-/multi-path routing[J]. Journal of Lightwave Technology, 2013, 31(1): 15–22. doi: 10.1109/JLT.2012.2227683 -