無線虛擬網(wǎng)絡(luò)中基于自回歸滑動(dòng)平均預(yù)測(cè)的在線自適應(yīng)虛擬資源分配算法
doi: 10.11999/JEIT180048 cstr: 32379.14.JEIT180048
-
重慶郵電大學(xué)移動(dòng)通信技術(shù)重點(diǎn)實(shí)驗(yàn)室 ??重慶 ??400065
ARMA-prediction Based Online Adaptive Dynamic Resource Allocation in Wireless Virtualized Networks
-
Key Laboratory of Mobile Communication Technology, Chongqing University of Post and Telecommunications, Chongqing 400065, China
-
摘要:
該文針對(duì)無線虛擬化網(wǎng)絡(luò)中業(yè)務(wù)的不確定和信息反饋的時(shí)延而引起虛擬資源分配不合理,提出一種基于自回歸滑動(dòng)平均(ARMA)預(yù)測(cè)的在線自適應(yīng)虛擬資源分配算法。首先,該算法以保障虛擬網(wǎng)絡(luò)隊(duì)列上溢概率為目標(biāo)對(duì)時(shí)頻資源和緩存資源進(jìn)行聯(lián)合分配,并建立虛擬網(wǎng)絡(luò)總成本最小化的理論分析模型。其次,考慮到虛擬網(wǎng)絡(luò)對(duì)不同資源差異化的應(yīng)用需求,設(shè)計(jì)了一種多時(shí)間尺度的資源動(dòng)態(tài)調(diào)度機(jī)制,在長(zhǎng)周期上基于ARMA模型的預(yù)測(cè)信息實(shí)現(xiàn)緩存資源的預(yù)留策略,在短周期上基于利用大偏差原理推導(dǎo)的隊(duì)列上溢概率對(duì)虛擬網(wǎng)絡(luò)優(yōu)先級(jí)排序,并根據(jù)確定的優(yōu)先級(jí)動(dòng)態(tài)調(diào)度時(shí)頻資源,從而滿足各虛擬網(wǎng)絡(luò)的業(yè)務(wù)需求。仿真結(jié)果表明,該算法可有效降低比特丟失率,同時(shí)提升物理資源的利用率。
-
關(guān)鍵詞:
- 無線虛擬化網(wǎng)絡(luò) /
- 資源分配 /
- 多時(shí)間尺度 /
- 自回歸滑動(dòng)平均 /
- 大偏差原理
Abstract:In order to solve the unreasonable virtual resource allocation caused by the uncertainty of service and delay of information feedback in wireless virtualized networks, an online adaptive virtual resource allocation algorithm proposed based on Auto Regressive Moving Average (ARMA) prediction. Firstly, a cost of virtual networks minimization is studied by jointly allocating the time-frequency resources and buffer space, while guaranteeing the overflow probability of each virtual network. Secondly, considering the different demand of virtual networks to different resources, a resource dynamic scheduling mechanism designed with multiple time scales, in which the reservation strategy of buffer space is realized based on the ARMA’s prediction information in slow time scale and the virtual networks are sorted according to the overflow probability derived by the large deviation principle and dynamically schedules the time-frequency resources in fast time scale, so as to meet the service demand. Simulation results show that the algorithm can effectively reduce the bit loss rate and improve the utilization of physical resources.
-
表 1 算法1:時(shí)頻資源動(dòng)態(tài)調(diào)度算法
(1) 在短周期$t$上觀察當(dāng)前各虛擬網(wǎng)絡(luò)隊(duì)列狀態(tài)${Q_k} \left( t \right)$、預(yù)留的 緩存資源大小${B_k} $ (2) for $k = 1;k < K;k + + $ do (3) 計(jì)算${a_k} $,根據(jù)式(22)估計(jì)${{\widehat m}_k} $ (4) if ${{\widehat m}_k} \ge {a_k} $ then (5) 加入虛擬網(wǎng)絡(luò)集合${{K}}_1 $,根據(jù)式(24)估計(jì)溢出剩余時(shí)間${T_k} $ (6) else (7) 加入虛擬網(wǎng)絡(luò)集合${{K}}_2 $,執(zhí)行黃金分割搜索算法估計(jì) ${P_{\rm of}^k} \left( {t{\rm{ + }}T} \right)$ (8) end if (9) end for (10) while ${{K}}_1 \ne \varnothing $ do (11) 令$m = 1$,選擇虛擬網(wǎng)絡(luò)$k = {\arg \min }_{k \in {{K}}_1 } \left\{ {{T_k} } \right\}$ (12) while ${A_k} \left( t \right) > {C_k} \left( t \right)$ do
(13) $\begin{aligned} & m \leftarrow m + 1,{C_k} \left( t \right) \leftarrow mr, \\ &N \leftarrow N - 1 \\ \end{aligned} $(14) end while (15) ${{K}}_1 = {{K}}_1 \backslash \left\{ k \right\}$ (16) end while (17) while ${{K}}_2 \ne \varnothing$ do
(18) 令$m = 1$,選擇虛擬網(wǎng)絡(luò)${k^*} = {\arg \max }_{{k^*} \in {{K}_2}} \left\{ {P_{\rm of}^{{k^*}}\left( {t{\rm{ + }}T} \right) - {\varepsilon _{{k^*}}}} \right\}$(19) 重復(fù)步驟(12)—步驟(14) (20) ${{K}}_2 = {{K}}_2 \backslash \left\{ {k^ * } \right\}$ (21) end while (22) if $N \ne 0$ then (23) for $k = 1;k < K;k + + $ do (24) if ${C_k} \left( t \right) < \left({Q_k} \left( t \right) + {A_k} \left( t \right)\right)$ then (25) 加入虛擬網(wǎng)絡(luò)集合${{K}}_3 $ (26) end if (27) end for (28) while ${{K}}_3 \ne \varnothing $ and $N \ne 0$
(29) 令$m = 1$,選擇虛擬$k^{''} = {\arg \min }_{k^{''} \in {{K}}_3 } \left\{ {\alpha _{{k^{''}}}} \right\}$(30) $ {{while}} \quad \left({Q_{{k^{''}}}} \left( t \right) + {A_{{k^{''}}}} \left( t \right)\right) > \left({{\bar C}_{{k^{''}}}} \left( t \right) + {C_{{k^{''}}}} \left( t \right)\right)\quad {{do}} $ (31) $m \leftarrow m + 1,{{\bar C}_{{k^{''}}}} \left( t \right) \leftarrow mr,N \leftarrow N - 1$ (32) end while
(33) ${{K}}_3 = {{K}}_3 \backslash \left\{ {k^{''} } \right\}$(34) end while (35) end if 下載: 導(dǎo)出CSV
表 2 仿真參數(shù)設(shè)置
仿真參數(shù) 仿真值 虛擬網(wǎng)絡(luò)數(shù)量 2,3,4,5,6 系統(tǒng)帶寬 10 MHz (50 RBs) 短周期時(shí)長(zhǎng) 1 ms 長(zhǎng)周期時(shí)長(zhǎng) 300 ms 負(fù)載到達(dá)過程 泊松分布 比特到達(dá)速率 $\lambda = 58.7\ {\rm kbit} $/ms RB單價(jià)$\alpha $ 1.2, 2.0, 1.5 unit/RB 緩存資源單價(jià)$\rho $ 8, 6, 4 unit/kbit 隊(duì)列上溢概率$\varepsilon $ 0.13, 0.05, 0.12 滑動(dòng)窗口大小${T_w} $ 60 ms 平滑指數(shù)$\eta $ 0.7 仿真時(shí)間 6600 ms 下載: 導(dǎo)出CSV
-
AGIWAL M, ROY A, and SAXENA N. Next generation 5G wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2017, 18(3): 1617–1655. doi: 10.1109/COMST.2016.2532458 KALIL M, AL-DWEIK A, SHARKH M A, et al. A framework for joint wireless network virtualization and cloud radio access networks for next generation wireless networks[J]. IEEE Access, 2017, 5: 20814–20827. doi: 10.1109/ACCESS.2017.2746666 ZHANG Haijun, LIU Na, CHU Xiaoli, et al. Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges[J]. IEEE Communications Magazine, 2017, 55(8): 138–145. doi: 10.1109/MCOM.2017.1600940 RAHMAN M M, DESPINS C, and AFFERS S. Design optimization of wireless access virtualization based on cost & QoS trade-Off utility maximization[J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6146–6162. doi: 10.1109/TWC.2016.2580505 SALLENT O, PEREZ-ROMERO J, FERRUS R, et al. On radio access network slicing from a radio resource management perspective[J]. IEEE Wireless Communications, 2017, 24(5): 166–174. doi: 10.1109/MWC.2017.1600220WC JIANG Menglan, CONDOLUCI M, and MAHMOODI T. Network slicing management & prioritization in 5G mobile systems[C]. The 22th European Wireless Conference, Oulu, Finland, 2016: 1–6. ZHU Qixuan and ZHANG Xi. Game-theory based buffer-space and transmission-rate allocations for optimal energy-erfficiency over wireless virtual networks[C]. 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, USA, 2015: 1–6. AHMADI H, MACALUSO I, GOMEZ I, et al. Substitutability of spectrum and cloud-based antennas in virtualized wireless networks[J]. IEEE Wireless Communications, 2017, 24(2): 114–120. doi: 10.1109/MWC.2016.1500303WC LEANH T, TRAN N, NGO D T, et al. Resource allocation for virtualized wireless networks with backhaul constraints[J]. IEEE Communications Letters, 2017, 21(1): 148–151. doi: 10.1109/LCOMM.2016.2617307 SCIANCALEPORE V, SAMDANIS K, COSTA-PEREZ X, et al. Mobile traffic forecasting for maximizing 5G network slicing resource utilization[C]. IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9. CHU Yenming, HUANG Nenfang, and LIN Shenghsiung. Quality of service provision in cloud-based storage system for multimedia delivery[J]. IEEE Systems Journal, 2014, 8(1): 292–303. doi: 10.1109/JSYST.2013.2257338 AMIRI M and MOHAMMAD-KHANLI L. Survey on prediction models of applications for resources provisioning in cloud[J]. Journal of Network & Computer Applications, 2017, 82: 93–113. 李捷, 劉先省, 韓志杰. 基于ARMA的無線傳感器網(wǎng)絡(luò)流量預(yù)測(cè)模型的研究[J]. 電子與信息學(xué)報(bào), 2007, 29(5): 1224–1227.LI Jie, LIU Xianxing, and HAN Zhijie. Research on the ARMA based traffic prediction algorithm for wireless sensor network[J]. Journal of Electronics &Information Technology, 2007, 29(5): 1224–1227. MANDJES M. Large Deviations for Gaussian Queues: Modelling Communication Networks[M]. Chichester: Wiley, 2007: 55–60. DEMBO A and ZEITOUNI O. Large Deviations Techniques and Applications[M]. Berlin: Springer, 2010: 303–304. YANG Jian, RAN Yongyi, CHEN Shuangwu, et al. Online source rate control for adaptive video streaming over HSPA and LTE-Style variable bit rate downlink channels[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2): 643–657. doi: 10.1109/TVT.2015.2398515 GARDNER E Jr. Exponential smoothing: The state of the art—Part II[J]. International Journal of Forecasting, 2006, 22(4): 637–666. doi: 10.1016/j.ijforecast.2006.03.005 -