一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

無線虛擬網(wǎng)絡(luò)中基于自回歸滑動(dòng)平均預(yù)測(cè)的在線自適應(yīng)虛擬資源分配算法

唐倫 楊希希 施穎潔 陳前斌

唐倫, 楊希希, 施穎潔, 陳前斌. 無線虛擬網(wǎng)絡(luò)中基于自回歸滑動(dòng)平均預(yù)測(cè)的在線自適應(yīng)虛擬資源分配算法[J]. 電子與信息學(xué)報(bào), 2019, 41(1): 16-23. doi: 10.11999/JEIT180048
引用本文: 唐倫, 楊希希, 施穎潔, 陳前斌. 無線虛擬網(wǎng)絡(luò)中基于自回歸滑動(dòng)平均預(yù)測(cè)的在線自適應(yīng)虛擬資源分配算法[J]. 電子與信息學(xué)報(bào), 2019, 41(1): 16-23. doi: 10.11999/JEIT180048
Lun TANG, Xixi YANG, Yingjie SHI, Qianbin CHEN. ARMA-prediction Based Online Adaptive Dynamic Resource Allocation in Wireless Virtualized Networks[J]. Journal of Electronics & Information Technology, 2019, 41(1): 16-23. doi: 10.11999/JEIT180048
Citation: Lun TANG, Xixi YANG, Yingjie SHI, Qianbin CHEN. ARMA-prediction Based Online Adaptive Dynamic Resource Allocation in Wireless Virtualized Networks[J]. Journal of Electronics & Information Technology, 2019, 41(1): 16-23. doi: 10.11999/JEIT180048

無線虛擬網(wǎng)絡(luò)中基于自回歸滑動(dòng)平均預(yù)測(cè)的在線自適應(yīng)虛擬資源分配算法

doi: 10.11999/JEIT180048 cstr: 32379.14.JEIT180048
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61571073)
詳細(xì)信息
    作者簡(jiǎn)介:

    唐倫:男,1973年生,教授,博士生導(dǎo)師,主要研究方向?yàn)樾乱淮鸁o線通信網(wǎng)絡(luò)、異構(gòu)蜂窩網(wǎng)絡(luò)、軟件定義無線網(wǎng)絡(luò)等

    楊希希:女,1992年生,碩士生,研究方向?yàn)榫W(wǎng)絡(luò)虛擬化

    施穎潔:女,1993年生,碩士生,研究方向?yàn)榫W(wǎng)路切片

    陳前斌:男,1967年生,教授,博士生導(dǎo)師,主要研究方向?yàn)閭€(gè)人通信、多媒體信息處理與傳輸、下一代移動(dòng)通信網(wǎng)絡(luò)、異構(gòu)蜂窩網(wǎng)絡(luò)

    通訊作者:

    楊希?!?a href="mailto:469519917@qq.com">469519917@qq.com

  • 中圖分類號(hào): TN929.5

ARMA-prediction Based Online Adaptive Dynamic Resource Allocation in Wireless Virtualized Networks

Funds: The National Natural Science Foundation of China (61571073)
  • 摘要:

    該文針對(duì)無線虛擬化網(wǎng)絡(luò)中業(yè)務(wù)的不確定和信息反饋的時(shí)延而引起虛擬資源分配不合理,提出一種基于自回歸滑動(dòng)平均(ARMA)預(yù)測(cè)的在線自適應(yīng)虛擬資源分配算法。首先,該算法以保障虛擬網(wǎng)絡(luò)隊(duì)列上溢概率為目標(biāo)對(duì)時(shí)頻資源和緩存資源進(jìn)行聯(lián)合分配,并建立虛擬網(wǎng)絡(luò)總成本最小化的理論分析模型。其次,考慮到虛擬網(wǎng)絡(luò)對(duì)不同資源差異化的應(yīng)用需求,設(shè)計(jì)了一種多時(shí)間尺度的資源動(dòng)態(tài)調(diào)度機(jī)制,在長(zhǎng)周期上基于ARMA模型的預(yù)測(cè)信息實(shí)現(xiàn)緩存資源的預(yù)留策略,在短周期上基于利用大偏差原理推導(dǎo)的隊(duì)列上溢概率對(duì)虛擬網(wǎng)絡(luò)優(yōu)先級(jí)排序,并根據(jù)確定的優(yōu)先級(jí)動(dòng)態(tài)調(diào)度時(shí)頻資源,從而滿足各虛擬網(wǎng)絡(luò)的業(yè)務(wù)需求。仿真結(jié)果表明,該算法可有效降低比特丟失率,同時(shí)提升物理資源的利用率。

  • 圖  1  系統(tǒng)架構(gòu)

    圖  2  多時(shí)間尺度的資源配置示意圖

    圖  3  長(zhǎng)周期上基于ARMA預(yù)測(cè)的緩存資源預(yù)留策略流程圖

    圖  4  不同方案平均資源成本

    圖  5  不同方案平均資源利用率

    圖  6  不同方案平均比特丟失率

    圖  7  不同T對(duì)應(yīng)的平均資源利用率

    圖  8  不同T對(duì)應(yīng)的平均比特丟失率

    圖  9  各虛擬網(wǎng)絡(luò)的平均負(fù)載實(shí)際值與預(yù)測(cè)值比較

    表  1  算法1:時(shí)頻資源動(dòng)態(tài)調(diào)度算法

     (1) 在短周期$t$上觀察當(dāng)前各虛擬網(wǎng)絡(luò)隊(duì)列狀態(tài)${Q_k} \left( t \right)$、預(yù)留的    緩存資源大小${B_k} $
     (2) for $k = 1;k < K;k + + $ do
     (3)   計(jì)算${a_k} $,根據(jù)式(22)估計(jì)${{\widehat m}_k} $
     (4)   if ${{\widehat m}_k} \ge {a_k} $ then
     (5)    加入虛擬網(wǎng)絡(luò)集合${{K}}_1 $,根據(jù)式(24)估計(jì)溢出剩余時(shí)間${T_k} $
     (6)   else
     (7)    加入虛擬網(wǎng)絡(luò)集合${{K}}_2 $,執(zhí)行黃金分割搜索算法估計(jì)      ${P_{\rm of}^k} \left( {t{\rm{ + }}T} \right)$
     (8)   end if
     (9) end for
     (10) while ${{K}}_1 \ne \varnothing $ do
     (11) 令$m = 1$,選擇虛擬網(wǎng)絡(luò)$k = {\arg \min }_{k \in {{K}}_1 } \left\{ {{T_k} } \right\}$
     (12) while ${A_k} \left( t \right) > {C_k} \left( t \right)$ do
     (13)  $\begin{aligned} & m \leftarrow m + 1,{C_k} \left( t \right) \leftarrow mr, \\ &N \leftarrow N - 1 \\ \end{aligned} $
     (14) end while
     (15) ${{K}}_1 = {{K}}_1 \backslash \left\{ k \right\}$
     (16) end while
     (17) while ${{K}}_2 \ne \varnothing$ do
     (18) 令$m = 1$,選擇虛擬網(wǎng)絡(luò)${k^*} = {\arg \max }_{{k^*} \in {{K}_2}} \left\{ {P_{\rm of}^{{k^*}}\left( {t{\rm{ + }}T} \right) - {\varepsilon _{{k^*}}}} \right\}$
     (19) 重復(fù)步驟(12)—步驟(14)
     (20) ${{K}}_2 = {{K}}_2 \backslash \left\{ {k^ * } \right\}$
     (21) end while
     (22) if $N \ne 0$ then
     (23) for $k = 1;k < K;k + + $ do
     (24)  if ${C_k} \left( t \right) < \left({Q_k} \left( t \right) + {A_k} \left( t \right)\right)$ then
     (25)  加入虛擬網(wǎng)絡(luò)集合${{K}}_3 $
     (26)  end if
     (27) end for
     (28) while ${{K}}_3 \ne \varnothing $ and $N \ne 0$
     (29) 令$m = 1$,選擇虛擬$k^{''} = {\arg \min }_{k^{''} \in {{K}}_3 } \left\{ {\alpha _{{k^{''}}}} \right\}$
     (30)  $ {{while}} \quad \left({Q_{{k^{''}}}} \left( t \right) + {A_{{k^{''}}}} \left( t \right)\right) > \left({{\bar C}_{{k^{''}}}} \left( t \right) + {C_{{k^{''}}}} \left( t \right)\right)\quad {{do}} $
     (31) $m \leftarrow m + 1,{{\bar C}_{{k^{''}}}} \left( t \right) \leftarrow mr,N \leftarrow N - 1$
     (32)  end while
     (33) ${{K}}_3 = {{K}}_3 \backslash \left\{ {k^{''} } \right\}$
     (34) end while
     (35) end if
    下載: 導(dǎo)出CSV

    表  2  仿真參數(shù)設(shè)置

    仿真參數(shù)仿真值
    虛擬網(wǎng)絡(luò)數(shù)量2,3,4,5,6
    系統(tǒng)帶寬10 MHz (50 RBs)
    短周期時(shí)長(zhǎng)1 ms
    長(zhǎng)周期時(shí)長(zhǎng)300 ms
    負(fù)載到達(dá)過程泊松分布
    比特到達(dá)速率$\lambda = 58.7\ {\rm kbit} $/ms
    RB單價(jià)$\alpha $1.2, 2.0, 1.5 unit/RB
    緩存資源單價(jià)$\rho $8, 6, 4 unit/kbit
    隊(duì)列上溢概率$\varepsilon $0.13, 0.05, 0.12
    滑動(dòng)窗口大小${T_w} $60 ms
    平滑指數(shù)$\eta $0.7
    仿真時(shí)間6600 ms
    下載: 導(dǎo)出CSV
  • AGIWAL M, ROY A, and SAXENA N. Next generation 5G wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2017, 18(3): 1617–1655. doi: 10.1109/COMST.2016.2532458
    KALIL M, AL-DWEIK A, SHARKH M A, et al. A framework for joint wireless network virtualization and cloud radio access networks for next generation wireless networks[J]. IEEE Access, 2017, 5: 20814–20827. doi: 10.1109/ACCESS.2017.2746666
    ZHANG Haijun, LIU Na, CHU Xiaoli, et al. Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges[J]. IEEE Communications Magazine, 2017, 55(8): 138–145. doi: 10.1109/MCOM.2017.1600940
    RAHMAN M M, DESPINS C, and AFFERS S. Design optimization of wireless access virtualization based on cost & QoS trade-Off utility maximization[J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6146–6162. doi: 10.1109/TWC.2016.2580505
    SALLENT O, PEREZ-ROMERO J, FERRUS R, et al. On radio access network slicing from a radio resource management perspective[J]. IEEE Wireless Communications, 2017, 24(5): 166–174. doi: 10.1109/MWC.2017.1600220WC
    JIANG Menglan, CONDOLUCI M, and MAHMOODI T. Network slicing management & prioritization in 5G mobile systems[C]. The 22th European Wireless Conference, Oulu, Finland, 2016: 1–6.
    ZHU Qixuan and ZHANG Xi. Game-theory based buffer-space and transmission-rate allocations for optimal energy-erfficiency over wireless virtual networks[C]. 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, USA, 2015: 1–6.
    AHMADI H, MACALUSO I, GOMEZ I, et al. Substitutability of spectrum and cloud-based antennas in virtualized wireless networks[J]. IEEE Wireless Communications, 2017, 24(2): 114–120. doi: 10.1109/MWC.2016.1500303WC
    LEANH T, TRAN N, NGO D T, et al. Resource allocation for virtualized wireless networks with backhaul constraints[J]. IEEE Communications Letters, 2017, 21(1): 148–151. doi: 10.1109/LCOMM.2016.2617307
    SCIANCALEPORE V, SAMDANIS K, COSTA-PEREZ X, et al. Mobile traffic forecasting for maximizing 5G network slicing resource utilization[C]. IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9.
    CHU Yenming, HUANG Nenfang, and LIN Shenghsiung. Quality of service provision in cloud-based storage system for multimedia delivery[J]. IEEE Systems Journal, 2014, 8(1): 292–303. doi: 10.1109/JSYST.2013.2257338
    AMIRI M and MOHAMMAD-KHANLI L. Survey on prediction models of applications for resources provisioning in cloud[J]. Journal of Network & Computer Applications, 2017, 82: 93–113.
    李捷, 劉先省, 韓志杰. 基于ARMA的無線傳感器網(wǎng)絡(luò)流量預(yù)測(cè)模型的研究[J]. 電子與信息學(xué)報(bào), 2007, 29(5): 1224–1227.

    LI Jie, LIU Xianxing, and HAN Zhijie. Research on the ARMA based traffic prediction algorithm for wireless sensor network[J]. Journal of Electronics &Information Technology, 2007, 29(5): 1224–1227.
    MANDJES M. Large Deviations for Gaussian Queues: Modelling Communication Networks[M]. Chichester: Wiley, 2007: 55–60.
    DEMBO A and ZEITOUNI O. Large Deviations Techniques and Applications[M]. Berlin: Springer, 2010: 303–304.
    YANG Jian, RAN Yongyi, CHEN Shuangwu, et al. Online source rate control for adaptive video streaming over HSPA and LTE-Style variable bit rate downlink channels[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2): 643–657. doi: 10.1109/TVT.2015.2398515
    GARDNER E Jr. Exponential smoothing: The state of the art—Part II[J]. International Journal of Forecasting, 2006, 22(4): 637–666. doi: 10.1016/j.ijforecast.2006.03.005
  • 加載中
圖(9) / 表(2)
計(jì)量
  • 文章訪問數(shù):  1769
  • HTML全文瀏覽量:  616
  • PDF下載量:  77
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-01-15
  • 修回日期:  2018-09-26
  • 網(wǎng)絡(luò)出版日期:  2018-10-19
  • 刊出日期:  2019-01-01

目錄

    /

    返回文章
    返回