一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

物聯(lián)網(wǎng)中基于相似性計(jì)算的傳感器搜索

劉素艷 劉元安 吳帆 范文浩

劉素艷, 劉元安, 吳帆, 范文浩. 物聯(lián)網(wǎng)中基于相似性計(jì)算的傳感器搜索[J]. 電子與信息學(xué)報(bào), 2018, 40(12): 3020-3027. doi: 10.11999/JEIT171085
引用本文: 劉素艷, 劉元安, 吳帆, 范文浩. 物聯(lián)網(wǎng)中基于相似性計(jì)算的傳感器搜索[J]. 電子與信息學(xué)報(bào), 2018, 40(12): 3020-3027. doi: 10.11999/JEIT171085
Suyan LIU, Yuanan LIU, Fan WU, Wenhao FAN. Sensor Search Based on Sensor Similarity Computing in the Internet of Things[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3020-3027. doi: 10.11999/JEIT171085
Citation: Suyan LIU, Yuanan LIU, Fan WU, Wenhao FAN. Sensor Search Based on Sensor Similarity Computing in the Internet of Things[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3020-3027. doi: 10.11999/JEIT171085

物聯(lián)網(wǎng)中基于相似性計(jì)算的傳感器搜索

doi: 10.11999/JEIT171085 cstr: 32379.14.JEIT171085
基金項(xiàng)目: 國家自然科學(xué)基金(61272518, 61502050),安全生產(chǎn)智能監(jiān)控北京市重點(diǎn)實(shí)驗(yàn)室主任基金(北京郵電大學(xué)),廣東省‘揚(yáng)帆計(jì)劃’引進(jìn)創(chuàng)新創(chuàng)業(yè)團(tuán)隊(duì)項(xiàng)目
詳細(xì)信息
    作者簡介:

    劉素艷:女,1982年生,博士生,研究方向?yàn)槲锫?lián)網(wǎng)搜索、無線傳感器網(wǎng)絡(luò)

    劉元安:男,1963年生,教授,研究方向?yàn)殡姶偶嫒?、泛在無線網(wǎng)絡(luò)

    吳帆:女,1981年生,副教授,研究方向?yàn)槲锫?lián)網(wǎng)搜索、泛在無線網(wǎng)絡(luò)

    范文浩:男,1986年生,講師,研究方向?yàn)橐苿?dòng)設(shè)備、云計(jì)算

    通訊作者:

    劉素艷  153897455@qq.com

  • 中圖分類號: TP393

Sensor Search Based on Sensor Similarity Computing in the Internet of Things

Funds: The National Natural Science Foundation of China (61272518, 61502050), The Beijing Key Laboratory Director Foundation of Work Safety Intelligent Monitoring (Beijing University of Posts and Telecommunications), The YangFan Innovative & Entrepreneurial Research Team Project of Guangdong Province
  • 摘要: 物聯(lián)網(wǎng)逐漸成為學(xué)術(shù)界研究的熱點(diǎn)領(lǐng)域,無處不在的傳感器設(shè)備促進(jìn)了傳感器搜索服務(wù)的產(chǎn)生。物聯(lián)網(wǎng)中搜索的強(qiáng)時(shí)空性、海量數(shù)據(jù)的異構(gòu)性與傳感器節(jié)點(diǎn)的資源受限性,給物聯(lián)網(wǎng)搜索引擎高效地查詢傳感器提出了挑戰(zhàn)。該文提出基于傳感器定量數(shù)值的線性分段擬合相似性(PLSS)搜索算法。PLSS算法通過分段和線性擬合的方法,構(gòu)建傳感器定量數(shù)值的相似性計(jì)算模型,從而計(jì)算傳感器的相似度,根據(jù)相似度查找最相似的傳感器集群。與模糊集(FUZZY)算法和最小二乘法相比,PLSS算法平均查詢精度和查詢效率較高。與原數(shù)據(jù)相比,PLSS算法的存儲開銷至少降低了兩個(gè)數(shù)量級。
  • 圖  2  PLSS搜索流程

    圖  1  物聯(lián)網(wǎng)基于內(nèi)容的傳感器查詢體系架構(gòu)

    圖  3  數(shù)據(jù)分段示意圖

    圖  4  Intel Berkeley傳感器分布圖

    圖  5  查詢準(zhǔn)確度對比

    圖  6  查詢速度比較

    表  1  數(shù)據(jù)存儲開銷分析

    傳感器1 傳感器20 數(shù)據(jù)個(gè)數(shù)統(tǒng)計(jì)
    原數(shù)據(jù)
    (時(shí)間,傳感器值)
    1317×2 2059×2 6.752×103
    FUZZY算法
    (傳感器平均數(shù)據(jù)密度函數(shù))
    16×4×10 20×4×10 2.400×103
    FUZZY算法
    (傳感器平均數(shù)據(jù)斜率密度函數(shù))
    10×4×10 14×4×10
    最小二乘多項(xiàng)式擬合算法
    (傳感器函數(shù)系數(shù))
    9 9 1.800×10
    PLSS算法
    (傳感器函數(shù)系數(shù))
    16 25 4.100×10
    下載: 導(dǎo)出CSV
  • BELLO O and ZEADALLY S. Intelligent device-to-device communication in the internet of things[J]. IEEE Systems Journal, 2016, 10(3): 1172–1182 doi: 10.1109/JSYST.2014.2298837
    EVANS D. The Internet of things: How the next evolution of the internet is changing everything[C]. Cisco Internet Business Solutions Group, San Francisco, USA, 2011.
    RIBEIRO M, GROLINGER K, and CAPRETZ M A M. MLaaS: Machine learning as a service[C]. 2015 IEEE 14th International Conference on Machine Learning and Applications., Miami, USA, 2015: 896–902.
    LI Shancang, LI Daxu, and ZHAO Shanshan. The internet of things: A survey[J]. Information Systems Frontiers, 2015, 17(2): 243–259 doi: 10.1007/s10796-014-9492-7
    張普寧. 面向物聯(lián)網(wǎng)搜索服務(wù)的實(shí)體狀態(tài)匹配估計(jì)方法研究[D]. [博士論文], 北京郵電大學(xué), 2017.

    ZHANG Puning. Research on entity state matching estimation method towards search service in the internet of things[D]. [Ph.D. dissertation], Beijing University of Posts and Telecommunications, 2017.
    于海寧, 張宏莉, 方濱興, 等. 物聯(lián)網(wǎng)中物理實(shí)體搜索服務(wù)的研究[J]. 電信科學(xué), 2012, 28(10): 111–119 doi: 10.3969/j.issn.1000-0801.2012.10.019

    YU Haining, ZHANG Hongli, FANG Binxing, et al. Research on search service for physical entities in the internet of things[J]. Telecommunications Science, 2012, 28(10): 111–119 doi: 10.3969/j.issn.1000-0801.2012.10.019
    WU Dapeng, HE Jing, WANG Hongguang, et al. A hierarchical packet forwarding mechanism for energy harvesting wireless sensor networks[J]. IEEE Communication Magazine, 2015, 53(8): 92–98 doi: 10.1109/MCOM.2015.7180514
    LI Dongsheng, ZHANG Wanxin, SHEN Siqi, et al. SES-LSH: Shuffle-efficient locality sensitive hashing for distributed similarity search[C]. 2017 IEEE 24th International Conference on Web Services, Honolulu, USA, 2017: 822–827.
    ZHAO Xujun, ZHANG Jifu, and QIN Xiao. kNN-DP: Handling data skewness in kNN joins using mapreduce[J].IEEE Transactions on Parallel and Distributed Systems, 2017, 29(3): 600–613 doi: 10.1109/TPDS.2017.2767596
    蔣翠清, 疏得友, 段銳. 基于用戶時(shí)空相似性的位置推薦算法[J]. 計(jì)算機(jī)工程, 2018, 44(7): 177–182 doi: 10.19678/j.issn.1000-3428.0047996

    JIANG Cuiqing, SHU Deyou, and DUAN Rui. Location recommendation algorithm based on spatial-temporal similarity of user[J]. Computer Engineering, 2018, 44(7): 177–182 doi: 10.19678/j.issn.1000-3428.0047996
    張普寧, 劉元安, 吳帆, 等. 物聯(lián)網(wǎng)中適用于內(nèi)容搜索的實(shí)體狀態(tài)匹配預(yù)測方法[J]. 電子與信息學(xué)報(bào), 2015, 37(12): 2815–2820 doi: 10.11999/JEIT150191

    ZHANG Puning, LIU Yuanan, WU Fan, et al. An entity state matching prediction method for content-based search in the internet of things[J]. Journal of Electronics&Information Technology, 2015, 37(12): 2815–2820 doi: 10.11999/JEIT150191
    ELAHI B M, ROMER K, OSTERMAIER B, et al. Sensor ranking: A primitive for efficient content-based sensor search[C]. International Conference on Information Processing in Sensor Networks, San Francisco, USA, 2009: 217–228.
    ROMER K, OSTERMAIER B, OSTERMAIER F, et al. Real-time search for real-world entities: A survey[J]. Proceedings of the IEEE, 2010, 98(11): 1887–1902 doi: 10.1109/JPROC.2010.2062470
    ZHANG Puning, LIU Yanan, WU Fan, et al. Low-overhead and high-precision prediction model for content-based sensor search in the internet of things[J]. IEEE Communications Letters, 2016, 20(4): 720–723 doi: 10.1109/LCOMM.2016.2521735
    EBRAHIMI M, SHAFIEIBAVANI E, WONG R K, et al. An adaptive meta-heuristic search for the internet of things[J]. Future Generation Computer Systems, 2017, 76(11): 486–494.
    TRUONG C, ROMER K, and CHEN K. Fuzzy-based sensor search in the web of things[C]. 2012 3rd International Conference on the Internet of Things, Wuxi, China, 2012: 127–134.
    ZHUKOV V and KOMAROV M. Semantic control method of the internet of things based on linked open data[C]. 2017 IEEE 19th Conference on Business Informatics, Thessaloniki, Greece, 2017: 1–4.
    Intel Berkeley Research lab. Intel berkeley research lab sensors data[OL]. http://db.csail.mit.edu/labdata/labdata.html. 2004.10.
    DIAS G M, BELLALTA B, and OECHSNER S. A survey about prediction-based data reduction in wireless sensor networks[J]. ACM Computing Surveys, 2016, 49(3): 58.
  • 加載中
圖(6) / 表(1)
計(jì)量
  • 文章訪問數(shù):  2049
  • HTML全文瀏覽量:  822
  • PDF下載量:  58
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-11-20
  • 修回日期:  2018-09-12
  • 網(wǎng)絡(luò)出版日期:  2018-09-20
  • 刊出日期:  2018-12-01

目錄

    /

    返回文章
    返回