一種寬帶大斜視STOLT插值及距離變標(biāo)補(bǔ)償方法
doi: 10.11999/JEIT171068 cstr: 32379.14.JEIT171068
-
①(海軍工程大學(xué)電子工程學(xué)院 武漢 430033) ②(海軍工程大學(xué)海軍水聲技術(shù)研究所 武漢 430033)
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61671461, 41304015)
Range Scaling Compensation Method Based on STOLT Interpolation in Broadband Squint SAS Imaging
-
WANG Jinbo① TANG Jinsong② ZHANG Sen② ZHONG Heping②
Funds:
The National Natural Science Foundation of China (61671461, 41304015)
-
摘要: 針對(duì)大斜視合成孔徑聲吶成像問題,該文推導(dǎo)了寬帶大斜視條件下合成孔徑聲吶回波在徑向和方位向2維波數(shù)域中的波數(shù)譜的解析表達(dá)式,指出了Stolt插值需要解決的距離波數(shù)譜卷繞以及成像后距離向上目標(biāo)的相對(duì)距離縮小等問題,給出了距離波數(shù)譜卷繞時(shí)的Stolt插值方法,提出了距離波數(shù)變標(biāo)因子的概念,并通過在距離空域中補(bǔ)償距離波數(shù)變標(biāo)因子引起的距離變標(biāo)的方法,解決了大斜視角條件下Stolt插值引起的距離變標(biāo)問題。點(diǎn)目標(biāo)仿真數(shù)據(jù)和模擬回波數(shù)據(jù)處理驗(yàn)證了該文方法的正確性和有效性。
-
關(guān)鍵詞:
- 合成孔徑聲吶成像 /
- 寬帶 /
- 斜視 /
- 算法 /
- 距離波數(shù)變標(biāo)因子
Abstract: Considering the problem of large squint synthetic aperture sonar imaging, the analytical expression of the wavenumber spectrum is analyzed in detail in the radial and azimuth wavenumber fields under the wide-band high-squint conditions. The spectrum winding and shrink in the distance wavenumber fields after the Stolt interpolation are pointed out, and the reduced relative distance between the target in the imaging result is also indicated, then the Stolt interpolation method for distance wavenumber spectrum winding is given. The concept of range wavenumber scaling factor is proposed, the method of compensating the scaling factor and the spectrum winding in the distance space are given. Finally, the problem of range scaling caused by Stolt interpolation under large oblique angle is solved by compensating the distance variable in distance space. Point object simulation data and simulated echo data processing verify the correctness and validity of the proposed method. -
[2] CHEN C, ZARE A, and COBB J T. Sand ripple characterization using an extended synthetic aperture sonar model and parallel sampling method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5547-5559. doi: 10.1109/TGRS.2015.2424837. CARBALLINI J and VIANA F. Using synthetic aperture sonar as an effective tool for pipeline inspection survey projects[C]. IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics), Rio de Janeiro, Brazil, 2015: 1-5. [3] HANSEN R E, CALLOW H J, SABO T O, et al. Challenges in seafloor imaging and mapping with synthetic aperture sonar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3677-3687. doi: 10.1109/TGRS.2011. 2155071. [4] HANSEN R E, LYONS A P, TORSTEIN O S, et al. The effect of internal wave-related features on synthetic aperture sonar[J]. IEEE Journal of Oceanic Engineering, 2015, 40(3): 621-631. doi: 10.1109/JOE.2014.2340351. [6] LARSEN L J, HYDROSPHERIC S, WILBY A, et al. Deep ocean survey and search using synthetic aperture sonar[C]. MTS/IEEE Oceans Conference, Seattle, USA, 2010: 1-4. [7] TIAN Zhen, TANG Jinsong, ZHONG Heping, et al. Extended range Doppler algorithm for multiple-receiver synthetic aperture sonar based on exact analytical two-dimensional spectrum[J]. IEEE Journal of Oceanic Engineering, 2016, 41(1): 164-174. doi: 10.1109/JOE.2015. 2402053. [8] SAWA T, KASAYA T, NAKATSUKA K, et al. Improvement of synthetic aperture sonar with multi-channel projector[C]. MTS/IEEE OCEANS,15, Washington, USA, 2015: 1-6. [9] QIAO Ziliang and KRAUS D. Azimuth ambiguity in redundant sampled stripmap SAS imaging[C]. MTS/IEEE OCEANS,16, Shanghai, China, 2016: 1-5. doi: 10.3873/ j.izzn.1000-1328.2016.01.015. LI Jianbing, ZHANG Shuangxi, SU Daliang, et al. A squint SAR imaging for linear range cell migration correction in Doppler domain[J]. Journal of Astronautics, 2016, 37(1): 118-126. doi: 10.383873/j.issn.1000-1328.2016.01.015. HOU Yuxing. Study on HRWS SAR imaging and the algorithm performance improvement[D]. [Ph.D. dissertation], Xidian University, 2015: 31-33. [12] STOLT R H. Migration by fourier transform[J]. Geophysics, 1978, 43(1): 23-48. [13] TOLMAN M A and LONG D G. New results on the Omega-k algorithm for processing synthetic aperture radar data[C]. 2011 IEEE Radar Conference (RADAR), Kansas City, USA, 2011: 868-873. doi: 10.1109/RADAR.2011.5960661. [14] CUMMING I G and WONG F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. London: Artech House, 2004: 119-226. [15] CALLOW H J, HAYES M P, and Gough P T. Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple-receiver geometry[J]. Electronics Letters, 2002, 38(7): 336-338. doi: 10.1049/el:20020219. [16] CAFFORIO C, PRATI C, and ROCCA F. SAR data focusing using seismic migration techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2): 194-207. doi: 10.1109/7.78293. XING Mengdao, BAO Zheng, LI Zhenfang, et al. Progress of Radar Imaging Algorithm[M]. Beijing: Publishing House of Electronics Industry, 2014: 27-40. -
計(jì)量
- 文章訪問數(shù): 1605
- HTML全文瀏覽量: 240
- PDF下載量: 132
- 被引次數(shù): 0