角閃爍下基于變分貝葉斯-交互式多模型的目標(biāo)跟蹤
doi: 10.11999/JEIT171025 cstr: 32379.14.JEIT171025
-
①(海軍工程大學(xué) 武漢 430033) ②(空軍預(yù)警學(xué)院 武漢 430019)
基金項(xiàng)目:
國家自然科學(xué)基金(61501505, 61501506)
Variational Bayesian-interacting Multiple Model Tracking Filter with Angle Glint Noise
-
XU Hong① YUAN Huadong② XIE Wenchong② LIU Weijian② WANG Yongliang②
Funds:
The National Natural Science Foundation of China (61501505, 61501506)
-
摘要: 開展角閃爍噪聲下的目標(biāo)跟蹤研究對提升傳感器的探測性能具有重要意義,其中角閃爍噪聲具有的分布未知和非平穩(wěn)特性是長期困擾研究者的難點(diǎn)。針對該問題,該文首先給出角閃爍下基于變分貝葉斯參數(shù)學(xué)習(xí)的跟蹤濾波理論框架。其次,提出一種聯(lián)合估計(jì)運(yùn)動狀態(tài)和閃爍噪聲分布的變分貝葉斯-交互式多模型(VB-IMM)算法,該算法通過設(shè)計(jì)多個(gè)并行的跟蹤模型處理角閃爍的跟蹤問題,同時(shí)利用變分貝葉斯方法實(shí)現(xiàn)閃爍噪聲分布參數(shù)的在線學(xué)習(xí),并反饋給跟蹤模型,實(shí)時(shí)調(diào)整跟蹤模型參數(shù)。最后,設(shè)計(jì)了仿真實(shí)驗(yàn)對算法在閃爍噪聲分布未知和非平穩(wěn)條件下的跟蹤性能進(jìn)行了驗(yàn)證,同時(shí)對算法的計(jì)算復(fù)雜度進(jìn)行了仿真分析。仿真結(jié)果表明,在量測噪聲分布未知和非平穩(wěn)條件下,VB-IMM具有較高的跟蹤精度,且算法復(fù)雜度較小,易于實(shí)現(xiàn)。
-
關(guān)鍵詞:
- 目標(biāo)跟蹤 /
- 角閃爍噪聲 /
- 非平穩(wěn) /
- 變分貝葉斯 /
- 交互式多模型
Abstract: Research on target tracking with glint noise is important to improve detection performance of sensor, in which the glint noise’s unknown distribution and non-stationary property puzzle researchers for a long time. In order to solve this problem, the tracking theoretical framework of variational Bayesian parameter learning with glint noise is firstly introduced. Then, a novel algorithm called Variational Bayesian-Interacting Multiple Model (VB-IMM) is proposed to estimate the system states as well as the unknown glint noise’s distribution. The proposed algorithm designs a bank of tracking filters in parallel with different measurement noise. Moreover, the algorithm utilizes variational Bayesian method to learn distribution parameters of the glint noise online and feed these parameters back to the tracking filters to revise the filters. In order to validate the performance of this algorithm, comparative experiments are carried out from two aspects of tracking accuracy and computational complexity. Simulation results verify good performance of tracking error and low computational complexity of the proposed algorithm. -
[2] HEWER G A, MARTIN R D, and ZEH J. Robust preprocessing for Kalman filtering of glint noise[J]. IEEE Tranactions on Aerospace and Electronic Systems, 1987, 23(1): 120-128. doi: 10.1109/TAES.1987.313340. SKOLNIK M. Radar Handbook(Third Edition)[M]. U.S., McGraw Hill Press, 2008: 377-368. [3] WU Wengrong. Target racking with glint noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 174-185. doi: 10.1109/7.249123. [4] DAEIPOUR E and BAR-SHALOM Y. IMM tracking of maneuvering targets in the presence of glint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 996-1003. doi: 10.1109/7.705913. LU Cheng, LI Wei, LI Xiangping, et al. Research on target tracking in angular glint noise condition based on improved EKPF algorithm[J]. Tactical Missile Technology, 2017, (2): 81-85. doi: 10.16358/j.issn.1009-1300.2017.02.14. ZHANG Xueying, CAI Zongping, and WEI Hao. Target tracking based on cubature particle filter algorithm in glint noise environment[J]. Science Technology and Engineering, 2016, (29): 271-274. doi: 10.3969/j.issn.1671-1815.2016.29. 047. [7] LI Hongwei and WANG Jun. Particle filter for manoeuvring target tracking via passive radar measurements with glint noise[J]. IET Radar, Sonar and Navigation, 2012, 6(3): 180-189. doi: 10.1049/iet-rsn.2011.0075. [8] KIM J, TANDALE M, MENON P K, et al. Particle filter for ballistic target tracking with glint noise[J]. Journal of Guidance Control and Dynamics, 2010, 33(6): 1918-1921. doi: 10.2514/1.51000. [9] BILIK I and TABRIKIAN J. Maneuvering target tracking in the presence of glint using the nonlinear Gaussian mixture kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 246-262. doi: 10.1109/TAES. 2010.5417160. [10] WANG Hongjian and LI Cun. An improved Gaussian mixture CKF algorithm under non-Gaussian observation noise[J]. Discrete Dynamics in Nature and Society, 2016(12): 1-10. doi: 10.1155/2016/1082837. WANG Lei, CHENG Xianghong, and LI Shuangxi. Gaussian sum high order Unscented Kalman filtering algorithm[J]. Acta Electronica Sinica, 2017, 45(2): 424-430. 10.3969/j.issn. 0372-2112.2017.02.022. HUANG Binke, WANG Gang, and WANG Wenbing. General proof of observation distance independence of the far-zone angular glint of radar targets[J]. Systems Engineering and Electronics, 2007, 29(4): 505-508. doi: 10.3321/j.issn:1001- 506X.2007.04.002. [14] BISHOP C M. Pattern Recognition and Machine Learning [M]. New York, Springer, 2006: 423-517. [15] TZIKAS D G, LIKAS C L, and GALATSANOS N P. The variational approximation for bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131-146. doi: 10.1109/MSP.2008.929620. [16] BLEI D M, KUCUKELBIR A, and MCAULIFFE J D. Variational inference: A review for statisticians[J]. Journal of The American Statistical Association, 2017, 112(518): 859-877. doi: 10.1080/01621459.2017.1285773. [17] ZHU Hao, LEUNG H, and HE Zhongshi. State estimation in unknown non-Gaussian measurement noise using variational bayesian technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(49): 2601-2614. doi: 10.1109/ TAES.2013.6621839. [18] SARKKA S and NUMMENMAA A. Recursive noise adaptive kalman filtering by variational bayesian approximations[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 596-600. doi: 10.1109/TAC.2008.2008348. SHEN Chen, Xu Dingjie, SHEN Feng, et al. Generalized noises adaptive kalman filtering based on variational inference[J]. Systems Engineering and Electronics, 2014, 36(8): 1466-1472. doi: 10.3969/j.issn.1001-506X.2014.08.03. [20] HUANG Yulong, ZHANG Yonggang, WU Zhemin, et al. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices[J]. IEEE Transactions on Automatic Control, 2018, 63(2): 594-601. doi: 10.1109/TAC.2017.2730480. [21] ARDESHIRI T, ÖZKAN E, ORGUNER U, et al. Approximate bayesian smoothing with unknown process and measurement noise covariances[J]. IEEE Signal Processing Letters, 2015, 22(12): 2450-2454. doi: 10.1109/LSP.2015. 2490543. [22] MA Tianli, WANG Xinmin, XIE Rong, et al. Variational bayesian cubature kalman filter for bearing-only tracking in glint noise environment[C]. IEEE Chinese Guidance, Navigation and Control Conference, Nanjing, China, 2016: 232-237. [23] MIAO Zhiyong, LÜ Yunlong, XU Dingjie, et al. Analysis of a variational Bayesian adaptive cubature Kalman filter tracking loop for high dynamic conditions[J]. Gps Solutions, 2017, 21(1): 111-122. doi: 10.1007/s10291-015-0510-0. [24] DONG Peng, JING Zhongliang, LEUNG H, et al. Variational bayesian adaptive Cubature information filter based on Wishart distribution[J]. IEEE Transactions on Automatic Control, 2017, 62(11): 6051-6057. doi: 10.1109/TAC.2017. 2704442. [25] BORDEN B H and MUMFORD M L. A statistical glint/radar cross section target model[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(5): 781-785. doi: 10.1109/TAES.1983.309383. [26] ARASARATNAM I and HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269. doi: 10.1109/TAC.2009.2019800. [27] AGAMENNONI G, NIETO J I, and NEBOT E M. Approximate inference in state-space models with heavy- tailed noise[J]. IEEE Transactions on Signal Processing, 2012, 60(10): 5024-5037. doi: 10.1109/TSP.2012.2208106. [28] LI Tiancheng, BOLIC M, and DJURIC P. Resampling methods for particle filtering: Classification implementation and strategies[J]. IEEE Signal Processing Magazine, 2015, 32(3): 70-86. doi: 10.1109/MSP.2014.2330626. -
計(jì)量
- 文章訪問數(shù): 1222
- HTML全文瀏覽量: 201
- PDF下載量: 73
- 被引次數(shù): 0