一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

角閃爍下基于變分貝葉斯-交互式多模型的目標(biāo)跟蹤

許紅 袁華東 謝文沖 劉維建 王永良

許紅, 袁華東, 謝文沖, 劉維建, 王永良. 角閃爍下基于變分貝葉斯-交互式多模型的目標(biāo)跟蹤[J]. 電子與信息學(xué)報(bào), 2018, 40(7): 1583-1590. doi: 10.11999/JEIT171025
引用本文: 許紅, 袁華東, 謝文沖, 劉維建, 王永良. 角閃爍下基于變分貝葉斯-交互式多模型的目標(biāo)跟蹤[J]. 電子與信息學(xué)報(bào), 2018, 40(7): 1583-1590. doi: 10.11999/JEIT171025
XU Hong, YUAN Huadong, XIE Wenchong, LIU Weijian, WANG Yongliang. Variational Bayesian-interacting Multiple Model Tracking Filter with Angle Glint Noise[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1583-1590. doi: 10.11999/JEIT171025
Citation: XU Hong, YUAN Huadong, XIE Wenchong, LIU Weijian, WANG Yongliang. Variational Bayesian-interacting Multiple Model Tracking Filter with Angle Glint Noise[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1583-1590. doi: 10.11999/JEIT171025

角閃爍下基于變分貝葉斯-交互式多模型的目標(biāo)跟蹤

doi: 10.11999/JEIT171025 cstr: 32379.14.JEIT171025
基金項(xiàng)目: 

國家自然科學(xué)基金(61501505, 61501506)

詳細(xì)信息
    作者簡介:

    許紅:許 紅: 男,1991年生,博士生,研究方向?yàn)槔走_(dá)數(shù)據(jù)處理、信息融合. 袁華東: 男,1985年生,博士生,研究方向?yàn)槔走_(dá)數(shù)據(jù)處理、陣列信號處理. 謝文沖: 男,1978年生,副教授,主要研究方向?yàn)闄C(jī)載雷達(dá)信號處理、空時(shí)自適應(yīng)信號處理等. 劉維建: 男,1982年生,講師,主要研究方向?yàn)榭諘r(shí)自適應(yīng)檢測、陣列信號處理. 王永良: 男,1965年生,中國科學(xué)院院士,主要研究方向?yàn)槔走_(dá)信號處理、空時(shí)自適應(yīng)信號處理等.

  • 中圖分類號: TN953

Variational Bayesian-interacting Multiple Model Tracking Filter with Angle Glint Noise

Funds: 

The National Natural Science Foundation of China (61501505, 61501506)

  • 摘要: 開展角閃爍噪聲下的目標(biāo)跟蹤研究對提升傳感器的探測性能具有重要意義,其中角閃爍噪聲具有的分布未知和非平穩(wěn)特性是長期困擾研究者的難點(diǎn)。針對該問題,該文首先給出角閃爍下基于變分貝葉斯參數(shù)學(xué)習(xí)的跟蹤濾波理論框架。其次,提出一種聯(lián)合估計(jì)運(yùn)動狀態(tài)和閃爍噪聲分布的變分貝葉斯-交互式多模型(VB-IMM)算法,該算法通過設(shè)計(jì)多個(gè)并行的跟蹤模型處理角閃爍的跟蹤問題,同時(shí)利用變分貝葉斯方法實(shí)現(xiàn)閃爍噪聲分布參數(shù)的在線學(xué)習(xí),并反饋給跟蹤模型,實(shí)時(shí)調(diào)整跟蹤模型參數(shù)。最后,設(shè)計(jì)了仿真實(shí)驗(yàn)對算法在閃爍噪聲分布未知和非平穩(wěn)條件下的跟蹤性能進(jìn)行了驗(yàn)證,同時(shí)對算法的計(jì)算復(fù)雜度進(jìn)行了仿真分析。仿真結(jié)果表明,在量測噪聲分布未知和非平穩(wěn)條件下,VB-IMM具有較高的跟蹤精度,且算法復(fù)雜度較小,易于實(shí)現(xiàn)。
  • [2] HEWER G A, MARTIN R D, and ZEH J. Robust preprocessing for Kalman filtering of glint noise[J]. IEEE Tranactions on Aerospace and Electronic Systems, 1987, 23(1): 120-128. doi: 10.1109/TAES.1987.313340.
    SKOLNIK M. Radar Handbook(Third Edition)[M]. U.S., McGraw Hill Press, 2008: 377-368.
    [3] WU Wengrong. Target racking with glint noise[J]. IEEE Transactions on  Aerospace and Electronic Systems, 1993, 29(1): 174-185. doi: 10.1109/7.249123.
    [4] DAEIPOUR E and BAR-SHALOM Y. IMM tracking of maneuvering targets in the presence of glint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 996-1003. doi: 10.1109/7.705913.
    LU Cheng, LI Wei, LI Xiangping, et al. Research on target tracking in angular glint noise condition based on improved EKPF algorithm[J]. Tactical Missile Technology, 2017, (2): 81-85. doi: 10.16358/j.issn.1009-1300.2017.02.14.
    ZHANG Xueying, CAI Zongping, and WEI Hao. Target tracking based on cubature particle filter algorithm in glint noise environment[J]. Science Technology and Engineering, 2016, (29): 271-274. doi: 10.3969/j.issn.1671-1815.2016.29. 047.
    [7] LI Hongwei and WANG Jun. Particle filter for manoeuvring target tracking via passive radar measurements with glint noise[J]. IET Radar, Sonar and Navigation, 2012, 6(3): 180-189. doi: 10.1049/iet-rsn.2011.0075.
    [8] KIM J, TANDALE M, MENON P K, et al. Particle filter for ballistic target tracking with glint noise[J]. Journal of Guidance Control and Dynamics, 2010, 33(6): 1918-1921. doi: 10.2514/1.51000.
    [9] BILIK I and TABRIKIAN J. Maneuvering target tracking in the presence of glint using the nonlinear Gaussian mixture kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 246-262. doi: 10.1109/TAES. 2010.5417160.
    [10] WANG Hongjian and LI Cun. An improved Gaussian mixture CKF algorithm under non-Gaussian observation noise[J]. Discrete Dynamics in Nature and Society, 2016(12): 1-10. doi: 10.1155/2016/1082837.
    WANG Lei, CHENG Xianghong, and LI Shuangxi. Gaussian sum high order Unscented Kalman filtering algorithm[J]. Acta Electronica Sinica, 2017, 45(2): 424-430. 10.3969/j.issn. 0372-2112.2017.02.022.
    HUANG Binke, WANG Gang, and WANG Wenbing. General proof of observation distance independence of the far-zone angular glint of radar targets[J]. Systems Engineering and Electronics, 2007, 29(4): 505-508. doi: 10.3321/j.issn:1001- 506X.2007.04.002.
    [14] BISHOP C M. Pattern Recognition and Machine Learning [M]. New York, Springer, 2006: 423-517.
    [15] TZIKAS D G, LIKAS C L, and GALATSANOS N P. The variational approximation for bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131-146. doi: 10.1109/MSP.2008.929620.
    [16] BLEI D M, KUCUKELBIR A, and MCAULIFFE J D. Variational inference: A review for statisticians[J]. Journal of The American Statistical Association, 2017, 112(518): 859-877. doi: 10.1080/01621459.2017.1285773.
    [17] ZHU Hao, LEUNG H, and HE Zhongshi. State estimation in unknown non-Gaussian measurement noise using variational bayesian technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(49): 2601-2614. doi: 10.1109/ TAES.2013.6621839.
    [18] SARKKA S and NUMMENMAA A. Recursive noise adaptive kalman filtering by variational bayesian approximations[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 596-600. doi: 10.1109/TAC.2008.2008348.
    SHEN Chen, Xu Dingjie, SHEN Feng, et al. Generalized noises adaptive kalman filtering based on variational inference[J]. Systems Engineering and Electronics, 2014, 36(8): 1466-1472. doi: 10.3969/j.issn.1001-506X.2014.08.03.
    [20] HUANG Yulong, ZHANG Yonggang, WU Zhemin, et al. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices[J]. IEEE Transactions on Automatic Control, 2018, 63(2): 594-601. doi: 10.1109/TAC.2017.2730480.
    [21] ARDESHIRI T, ÖZKAN E, ORGUNER U, et al. Approximate bayesian smoothing with unknown process and measurement noise covariances[J]. IEEE Signal Processing Letters, 2015, 22(12): 2450-2454. doi: 10.1109/LSP.2015. 2490543.
    [22] MA Tianli, WANG Xinmin, XIE Rong, et al. Variational bayesian cubature kalman filter for bearing-only tracking in glint noise environment[C]. IEEE Chinese Guidance, Navigation and Control Conference, Nanjing, China, 2016: 232-237.
    [23] MIAO Zhiyong, LÜ Yunlong, XU Dingjie, et al. Analysis of a variational Bayesian adaptive cubature Kalman filter tracking loop for high dynamic conditions[J]. Gps Solutions, 2017, 21(1): 111-122. doi: 10.1007/s10291-015-0510-0.
    [24] DONG Peng, JING Zhongliang, LEUNG H, et al. Variational bayesian adaptive Cubature information filter based on Wishart distribution[J]. IEEE Transactions on Automatic Control, 2017, 62(11): 6051-6057. doi: 10.1109/TAC.2017. 2704442.
    [25] BORDEN B H and MUMFORD M L. A statistical glint/radar cross section target model[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(5): 781-785. doi: 10.1109/TAES.1983.309383.
    [26] ARASARATNAM I and HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269. doi: 10.1109/TAC.2009.2019800.
    [27] AGAMENNONI G, NIETO J I, and NEBOT E M. Approximate inference in state-space models with heavy- tailed noise[J]. IEEE Transactions on Signal Processing, 2012, 60(10): 5024-5037. doi: 10.1109/TSP.2012.2208106.
    [28] LI Tiancheng, BOLIC M, and DJURIC P. Resampling methods for particle filtering: Classification implementation and strategies[J]. IEEE Signal Processing Magazine, 2015, 32(3): 70-86. doi: 10.1109/MSP.2014.2330626.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1222
  • HTML全文瀏覽量:  201
  • PDF下載量:  73
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-11-02
  • 修回日期:  2018-04-03
  • 刊出日期:  2018-07-19

目錄

    /

    返回文章
    返回