一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于Teager能量算子和經(jīng)驗?zāi)B(tài)分解的語音端點(diǎn)檢測算法

沈希忠 鄭曉修

沈希忠, 鄭曉修. 基于Teager能量算子和經(jīng)驗?zāi)B(tài)分解的語音端點(diǎn)檢測算法[J]. 電子與信息學(xué)報, 2018, 40(7): 1612-1618. doi: 10.11999/JEIT171014
引用本文: 沈希忠, 鄭曉修. 基于Teager能量算子和經(jīng)驗?zāi)B(tài)分解的語音端點(diǎn)檢測算法[J]. 電子與信息學(xué)報, 2018, 40(7): 1612-1618. doi: 10.11999/JEIT171014
SHEN Xizhong, ZHENG Xiaoxiu. Teager Energy Operator and Empirical Mode Decomposition Based Voice Activity Detection Method[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1612-1618. doi: 10.11999/JEIT171014
Citation: SHEN Xizhong, ZHENG Xiaoxiu. Teager Energy Operator and Empirical Mode Decomposition Based Voice Activity Detection Method[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1612-1618. doi: 10.11999/JEIT171014

基于Teager能量算子和經(jīng)驗?zāi)B(tài)分解的語音端點(diǎn)檢測算法

doi: 10.11999/JEIT171014 cstr: 32379.14.JEIT171014
基金項目: 

上海市科委基金(15ZR1440700)

詳細(xì)信息
    作者簡介:

    沈希忠: 男,1968年生,教授,研究方向為信號處理. 鄭曉修: 男,1989年生,碩士生,研究方向為信號檢測技術(shù).

  • 中圖分類號: TP391.42

Teager Energy Operator and Empirical Mode Decomposition Based Voice Activity Detection Method

Funds: 

Foundation of Shanghai Science and Technology Commission of Shanghai Municipality (15ZR1440700)

  • 摘要: Teager能量算子是近年來提出的非線性方法,具有跟蹤時變信號的特點(diǎn),該文結(jié)合該算子和經(jīng)驗?zāi)B(tài)分解方法,提出一種新的語音端點(diǎn)檢測算法,用于尋找合理的語音起始和終止端點(diǎn)。該算法利用經(jīng)驗?zāi)B(tài)分解,提出本征模態(tài)函數(shù)的有效性篩選條件,通過篩選本征模態(tài)函數(shù),使得該算法能夠處理含噪語音信號,同時分解所得單模態(tài)特性正好滿足TEO算子對單成份能量跟蹤的要求,最后利用Hilbert變換解決了可能存在的模態(tài)混疊問題。經(jīng)過這些處理,算法能夠處理語音信號中清音段的端點(diǎn)標(biāo)識,比直接TEO、雙門限法效果好。通過大量實驗驗證了該算法的有效性。
  • [2] KUMAR J and JENA P. Solution to fault detection during power swing using Teager-Kaiser Energy Operator[J]. Arabian Journal for Science and Engineering, 2017, 42(12): 5003-5013.
    胡航. 現(xiàn)代語音信號處理[M]. 北京: 電子工業(yè)出版社, 2014: 30-48.
    [3] BHOWMICK A, CHANDRA M, and BISWAS A. Speech enhancement using Teager energy operated ERB-like perceptual wavelet packet decomposition[J]. International Journal of Speech Technology, 2017(4): 1-15.
    HAN Xiaohuan and JING Xinxing.  Speech endpoint detection based on power spectrum diference and Teager energy operator[J]. Computer Application and Software, 2011, 28(4): 82-83.
    LI Jie, ZHOU Ping, and DU Zhiran.  Application of short-time TEO energy in noisy speech endpoint[J].  Computer Engineering and Applications, 2013, 49(12): 144-147. doi: 10.3778/j.issn.1002-8331.1110-0479.
    WANG Maorong, ZHOU Ping, JING Xinxing, et al. Voice activity detection algorithm based on Mel-TEO in noisy environment[J].  Microelectronics & Computer, 2016, 33(4): 46-49. doi: 10.19304/j.cnki.issn1000-7180.2016.04.010.
    WANG Minghe, ZHANG Erhua, TANG Zhenmin, et al.  Voice activity detection based on Fisher linear discriminant analysis[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1343-1349. doi: 10.11999/JEIT141122.
    LI Ye, ZHANG Renzhi, CUI Huijuan, et al. Voice activity detection with low signal-to-noise rations based on the spectrum entropy[J].  Journal of Tsinghua University (Science and Technology), 2005, 45(10): 1397-1440.
    LIU Huan, WANG Jun, LIN Qiguang, et al.  A novel speech activity detection algorithm based on the fusion of time and frequency domain features[J].  Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2017, 31(1): 73-78. doi: 10.3969/j.issn.1673-4807.2017.01.014.
    [10] WAN Yulong, WANG Xianliang, ZHOU Ruohua, et al.  Enhanced voice activity detection based on automatic segmentation and event classification[J].  Journal of Computational Information Systems, 2014, 10(10): 4169-4177.
    [11] GHOSH P K, TSIARTAS A, and NARAYANAN S.  Robust voice activity detection using long-term signal variability[J].  IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(3): 600-613.
    LU Zhimao, JIN Hui, ZHANG Chunxiang, et al. Voice activity detection in complex environment based on Hilbert-Huang transform and order statistics filter[J].  Journal of Electronics & Information Technology, 2012, 34(1): 213-217. doi: 10.3724/SP.J.1146.2011.0047.
    [13] CHOI Jaehun and CHANG Joonhyuk. Dual-microphone voice activity detection technique based on two-step power level difference ratio[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2014, 22(6): 1069-1081.
    [14] TEAGER H and TEAGER S. Evidence for Nonlinear Sound Production Mechanisms in the Vocal Tract[M]. Springer, 1990: 241-261.
    [15] KAISER J F. On a simple algorithm to calculate the energy of a signal[C]. IEEE International Conference on Acoustics, New York, USA, 1990: 381-384.
    [16] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995.
    [17] KIRBAS I and PEKER M. Signal detection based on empirical mode decomposition and Teager-Kaiser energy operator and its application to P and S wave arrival time detection in seismic signal analysis[J]. Neural Computing and Applications, 2017, 28(10): 3035-3045.
    ZHENG Jinde, CHENG Junsheng, and YANG Yu. Modified EEMD algorithm and its application[J]. Journal of Vibration and Shock, 2013, 32(21): 21-26.
  • 加載中
計量
  • 文章訪問數(shù):  1761
  • HTML全文瀏覽量:  293
  • PDF下載量:  134
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-10-30
  • 修回日期:  2018-04-11
  • 刊出日期:  2018-07-19

目錄

    /

    返回文章
    返回