基于抽象解密結(jié)構(gòu)的全同態(tài)加密構(gòu)造方法分析
doi: 10.11999/JEIT170997 cstr: 32379.14.JEIT170997
-
①(浙江萬里學院基礎(chǔ)學院 寧波 315100) ②(浙江萬里學院電子與計算機學院 寧波 315100) ③(中國科學院信息工程研究所信息安全國家重點實驗室 北京 100093)
浙江省科技廳公益性技術(shù)科研項目(2017C33079, LGG18F020001),浙江省自然科學基金(LY17F020002),密碼科學技術(shù)國家重點實驗室開放課題基金,寧波市自然科學基金(2017A610120)
Analysis of Constructing Fully Homomorphic Encryption Based on the Abstract Decryption Structure
-
SONG Xinxia① CHEN Zhigang②③
The Public Projects of Zhejiang Province (2017C33079, LGG18F020001), The Natural Science Foundation of Zhejiang Province (LY17F020002), The Foundation of the State Key Laboratory of Cryptology, The Ningbo Natural Science Foundation (2017A610120)
-
摘要: 為什么能夠在格上構(gòu)造全同態(tài)加密?密文矩陣的本質(zhì)及構(gòu)造方法是什么?該文提出一個重要的概念:抽象解密結(jié)構(gòu)。該文以抽象解密結(jié)構(gòu)為工具,對目前全同態(tài)加密構(gòu)造方法進行分析,得到抽象解密結(jié)構(gòu)、同態(tài)性與噪音控制之間的關(guān)系,將全同態(tài)加密的構(gòu)造歸結(jié)為如何獲得最終解密結(jié)構(gòu)的問題,從而形式化地建立全同態(tài)加密構(gòu)造方法。最后對GSW全同態(tài)加密方法分析,提出其密文矩陣是由密文向量堆疊而成?;诿芪亩询B法,研究密文是矩陣的全同態(tài)加密的通用性原因,給出密文矩陣全同態(tài)加密與其它全同態(tài)加密之間的包含關(guān)系。
-
關(guān)鍵詞:
- 全同態(tài)加密 /
- 構(gòu)造方法 /
- 抽象解密結(jié)構(gòu) /
- 密文堆疊 /
- 學習錯誤問題
Abstract: Why can fully homomorphic encryption be constructed based on lattice What is the essence and construction of the matrix An important concept is proposed: Abstract decryption structure. Based on the abstract decryption structure, the main factors related to the homomorphic encryption are analyzed and relationship between abstract decryption structure, homomorphism and noise control is studied. The construction of the homomorphic encryption is attributed to the problem of how to obtain the final decryption structure. So the formal method of homomorphic encryption can be established. Thus the essential law of the construction method of the homomorphic encryption construction is expounded, which provides the clue and clue for the construction of the new full homomorphic encryption. The general reason of the full homomorphic encryption of the ciphertext matrix from the point of view of the ciphertexts stack method is studied. The relation between the full homomorphic encryption and the other homomorphic encryption is obtained. Finally, this paper gives a general method of constructing fully homomorphic encryption. -
GENTRY C. Fully homomorphic encryption using ideal lattices[C]. Proceedings of the 41st Annual ACM Symposium on Theory of Computing, Bethesda, USA, 2009: 169-178. doi: 10.1145/1536414.1536440. [2] SMART N P and VERCAUTEREN F. Fully homomorphic encryption with relatively small key and ciphertext sizes[C]. International Conference on Practice and Theory in Public- Key Cryptography, Berlin, Heidelberg, 2010: 420-443. doi: 10.1007/978-3-642-13013-7_25. [3] DIJK M, GENTRY C, HALEVI S, et al. Fully homomorphic encryption over the integers[C]. Advances in Cryptology- EUROCRYPT 2010, Berlin, Heidelberg, 2010: 24-43. [4] CORON J S, NACCACHE D, and TIBOUCHI M. Public key compression and modulus switching for fully homomorphic encryption over the integers[C]. Advances in Cryptology-EUROCRYPT 2012, Berlin, Heidelberg, 2012: 446-464. doi: 10.1007/978-3-642-29011-4_27. [5] CORON J S, MANDAL A, NACCACHE D, et al. Fully homomorphic encryption over the integers with shorter public keys[C]. Advances in Cryptology-CRYPTO 2011, Berlin, Heidelberg, 2011: 487-504. doi: 10.1007/978-3-642- 22792-9_28. [6] CHEON J H and STEHL D. Fully homomophic encryption over the integers revisited[C]. Advances in Cryptology- EUROCRYPT 2015, Sofia, Bulgaria, 2015: 513-536. doi: 10.1007/978-3-662-46800-5_20. [7] BRAKERSKI Z and VAIKUNTANATHAN V. Efficient fully homomorphic encryption from (standard) LWE[C]. IEEE 52nd Annual Symposium on Foundations of Computer Science, Los Alamitos, 2011: 97-106. doi: 10.1109/FOCS. 2011.12. [8] BRAKERSKI Z. Fully homomorphic encryption without modulus switching from classical gapsvp[C]. Advances in Cryptology-CRYPTO 2012, Berlin, Heidelberg, 2012: 868-886. doi: 10.1007/978-3-642-32009-5_50. [9] BRAKERSKI Z, GENTRY C, and VAIKUNTANATHAN V. (Leveled) Fully homomorphic encryption without bootstrapping[C]. The 3rd Innovations in Theoretical Computer Science Conference, Cambridge, Massachusetts, 2012: 1-36. doi: 10.1145/2090236.2090262. [10] GENTRY C, SAHAI A, and WATERS B. Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-Based[C]. Advances in Cryptology – CRYPTO 2013, Berlin, Heidelberg, 2013: 75-92. doi: 10.1007/978-3-642-40041-4_5. [11] REGEV O. On lattices, learning with errors, random linear codes, and cryptography[C]. The 37th Annual ACM Symposium on Theory of Computing, Baltimore, 2005: 84-93. doi: 10.1145/1060590.1060603. [12] COSTACHE A and SMART N P. Which ring based somewhat homomorphic encryption scheme is best?[C]. CT-RSA 2016, San Francisco, CA, 2016: 325-340. doi: 10.1007/978-3-319-29485-8_19. [13] GENTRY C, HALEVI S, and SMART N. Fully homomorphic encryption with polylog overhead[C]. Advances in Cryptology-EUROCRYPT 2012, Berlin, Heidelberg, 2012: 465-482. doi: 10.1007/978-3-642-29011-4_28. [14] OZTURK E, DOROZ Y, SAVAS E, et al. A custom accelerator for homomorphic encryption applications[J]. IEEE Transactions on Computers, 2017, 66(1): 3-16. doi: 10.1109/TC.2016.2574340. [15] CANETTI R, RAGHURAMAN S, RICHELSON S, et al. Chosen-ciphertext secure fully homomorphic encryption[C]. International Conference on Practice and Theory in Public- Key Cryptography, Amsterdam, 2017: 213-240. doi: 10.1007/ 978-3-662-54388-7_8. [16] GAVIN G. An efficient somewhat homomorphic encryption scheme based on factorization[C]. The 15th International Conference Cryptology and Network Security, Milan, 2016: 451-464. doi: 10.1007/978-3-319-48965-0_27. [17] BENARROCH D, BRAKERSKI Z, and LEPOINT T. FHE over the integers: decomposed and batched in the post-quantum regime[C]. International Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, Netherlands, 2017: 271-301. doi: 10.1007/978- 3-662-54388-7_10. [18] CHILLOTTI I, GAMA N, GEORGIEVA M, et al. Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds[C]. International Conference on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, 2016: 3-33. doi: 10.1007/978-3-662-53887-6_1. [19] HALEVI S and SHOUP V. Algorithms in HElib[C]. Advances in Cryptology-CRYPTO 2014, Santa Barbara, CA, 2014: 554-571. doi: 10.1007/978-3-662-44371-2_31. [20] CHEN H, LAINE K, PLAYER R, et al. Simple encrypted arithmetic library-SEAL v2.1[C]. Proceedings of the Financial Cryptography and Data Security, Sliema, Malta, 2017: 3-18. doi: 10.1007/978-3-319-70278-0_1. [21] CROCKETT E and PEIKERT C. : Functional lattice cryptography[C]. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 993-1005. doi: 10.1145/2976749. 2978402. [22] L PEZ-ALT A, TROMER E, and VAIKUNTANATHAN V. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption[C]. Proceedings of the 44th Symposium on Theory of Computing, New York, USA, 2012: 1219-1234. doi: 10.1145/2213977.2214086. -
計量
- 文章訪問數(shù): 1527
- HTML全文瀏覽量: 302
- PDF下載量: 102
- 被引次數(shù): 0