一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于抽象解密結(jié)構(gòu)的全同態(tài)加密構(gòu)造方法分析

宋新霞 陳智罡

宋新霞, 陳智罡. 基于抽象解密結(jié)構(gòu)的全同態(tài)加密構(gòu)造方法分析[J]. 電子與信息學報, 2018, 40(7): 1669-1675. doi: 10.11999/JEIT170997
引用本文: 宋新霞, 陳智罡. 基于抽象解密結(jié)構(gòu)的全同態(tài)加密構(gòu)造方法分析[J]. 電子與信息學報, 2018, 40(7): 1669-1675. doi: 10.11999/JEIT170997
SONG Xinxia, CHEN Zhigang. Analysis of Constructing Fully Homomorphic Encryption Based on the Abstract Decryption Structure[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1669-1675. doi: 10.11999/JEIT170997
Citation: SONG Xinxia, CHEN Zhigang. Analysis of Constructing Fully Homomorphic Encryption Based on the Abstract Decryption Structure[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1669-1675. doi: 10.11999/JEIT170997

基于抽象解密結(jié)構(gòu)的全同態(tài)加密構(gòu)造方法分析

doi: 10.11999/JEIT170997 cstr: 32379.14.JEIT170997
基金項目: 

浙江省科技廳公益性技術(shù)科研項目(2017C33079, LGG18F020001),浙江省自然科學基金(LY17F020002),密碼科學技術(shù)國家重點實驗室開放課題基金,寧波市自然科學基金(2017A610120)

詳細信息
    作者簡介:

    宋新霞: 女,1973年生,副教授,研究方向為代數(shù)與編碼. 陳智罡: 男,1972年生,教授,研究方向為全同態(tài)加密與格密碼.

  • 中圖分類號: TP309.7

Analysis of Constructing Fully Homomorphic Encryption Based on the Abstract Decryption Structure

Funds: 

The Public Projects of Zhejiang Province (2017C33079, LGG18F020001), The Natural Science Foundation of Zhejiang Province (LY17F020002), The Foundation of the State Key Laboratory of Cryptology, The Ningbo Natural Science Foundation (2017A610120)

  • 摘要: 為什么能夠在格上構(gòu)造全同態(tài)加密?密文矩陣的本質(zhì)及構(gòu)造方法是什么?該文提出一個重要的概念:抽象解密結(jié)構(gòu)。該文以抽象解密結(jié)構(gòu)為工具,對目前全同態(tài)加密構(gòu)造方法進行分析,得到抽象解密結(jié)構(gòu)、同態(tài)性與噪音控制之間的關(guān)系,將全同態(tài)加密的構(gòu)造歸結(jié)為如何獲得最終解密結(jié)構(gòu)的問題,從而形式化地建立全同態(tài)加密構(gòu)造方法。最后對GSW全同態(tài)加密方法分析,提出其密文矩陣是由密文向量堆疊而成?;诿芪亩询B法,研究密文是矩陣的全同態(tài)加密的通用性原因,給出密文矩陣全同態(tài)加密與其它全同態(tài)加密之間的包含關(guān)系。
  • GENTRY C. Fully homomorphic encryption using ideal lattices[C]. Proceedings of the 41st Annual ACM Symposium on Theory of Computing, Bethesda, USA, 2009: 169-178. doi: 10.1145/1536414.1536440.
    [2] SMART N P and VERCAUTEREN F. Fully homomorphic encryption with relatively small key and ciphertext sizes[C]. International Conference on Practice and Theory in Public- Key Cryptography, Berlin, Heidelberg, 2010: 420-443. doi: 10.1007/978-3-642-13013-7_25.
    [3] DIJK M, GENTRY C, HALEVI S, et al. Fully homomorphic encryption over the integers[C]. Advances in Cryptology- EUROCRYPT 2010, Berlin, Heidelberg, 2010: 24-43.
    [4] CORON J S, NACCACHE D, and TIBOUCHI M. Public key compression and modulus switching for fully homomorphic encryption over the integers[C]. Advances in Cryptology-EUROCRYPT 2012, Berlin, Heidelberg, 2012: 446-464. doi: 10.1007/978-3-642-29011-4_27.
    [5] CORON J S, MANDAL A, NACCACHE D, et al. Fully homomorphic encryption over the integers with shorter public keys[C]. Advances in Cryptology-CRYPTO 2011, Berlin, Heidelberg, 2011: 487-504. doi: 10.1007/978-3-642- 22792-9_28.
    [6] CHEON J H and STEHL D. Fully homomophic encryption over the integers revisited[C]. Advances in Cryptology- EUROCRYPT 2015, Sofia, Bulgaria, 2015: 513-536. doi: 10.1007/978-3-662-46800-5_20.
    [7] BRAKERSKI Z and VAIKUNTANATHAN V. Efficient fully homomorphic encryption from (standard) LWE[C]. IEEE 52nd Annual Symposium on Foundations of Computer Science, Los Alamitos, 2011: 97-106. doi: 10.1109/FOCS. 2011.12.
    [8] BRAKERSKI Z. Fully homomorphic encryption without modulus switching from classical gapsvp[C]. Advances in Cryptology-CRYPTO 2012, Berlin, Heidelberg, 2012: 868-886. doi: 10.1007/978-3-642-32009-5_50.
    [9] BRAKERSKI Z, GENTRY C, and VAIKUNTANATHAN V. (Leveled) Fully homomorphic encryption without bootstrapping[C]. The 3rd Innovations in Theoretical Computer Science Conference, Cambridge, Massachusetts, 2012: 1-36. doi: 10.1145/2090236.2090262.
    [10] GENTRY C, SAHAI A, and WATERS B. Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-Based[C]. Advances in Cryptology – CRYPTO 2013, Berlin, Heidelberg, 2013: 75-92. doi: 10.1007/978-3-642-40041-4_5.
    [11] REGEV O. On lattices, learning with errors, random linear codes, and cryptography[C]. The 37th Annual ACM Symposium on Theory of Computing, Baltimore, 2005: 84-93. doi: 10.1145/1060590.1060603.
    [12] COSTACHE A and SMART N P. Which ring based somewhat homomorphic encryption scheme is best?[C]. CT-RSA 2016, San Francisco, CA, 2016: 325-340. doi: 10.1007/978-3-319-29485-8_19.
    [13] GENTRY C, HALEVI S, and SMART N. Fully homomorphic encryption with polylog overhead[C]. Advances in Cryptology-EUROCRYPT 2012, Berlin, Heidelberg, 2012: 465-482. doi: 10.1007/978-3-642-29011-4_28.
    [14] OZTURK E, DOROZ Y, SAVAS E, et al. A custom accelerator for homomorphic encryption applications[J]. IEEE Transactions on Computers, 2017, 66(1): 3-16. doi: 10.1109/TC.2016.2574340.
    [15] CANETTI R, RAGHURAMAN S, RICHELSON S, et al. Chosen-ciphertext secure fully homomorphic encryption[C]. International Conference on Practice and Theory in Public- Key Cryptography, Amsterdam, 2017: 213-240. doi: 10.1007/ 978-3-662-54388-7_8.
    [16] GAVIN G. An efficient somewhat homomorphic encryption scheme based on factorization[C]. The 15th International Conference Cryptology and Network Security, Milan, 2016: 451-464. doi: 10.1007/978-3-319-48965-0_27.
    [17] BENARROCH D, BRAKERSKI Z, and LEPOINT T. FHE over the integers: decomposed and batched in the post-quantum regime[C]. International Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, Netherlands, 2017: 271-301. doi: 10.1007/978- 3-662-54388-7_10.
    [18] CHILLOTTI I, GAMA N, GEORGIEVA M, et al. Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds[C]. International Conference on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, 2016: 3-33. doi: 10.1007/978-3-662-53887-6_1.
    [19] HALEVI S and SHOUP V. Algorithms in HElib[C]. Advances in Cryptology-CRYPTO 2014, Santa Barbara, CA, 2014: 554-571. doi: 10.1007/978-3-662-44371-2_31.
    [20] CHEN H, LAINE K, PLAYER R, et al. Simple encrypted arithmetic library-SEAL v2.1[C]. Proceedings of the Financial Cryptography and Data Security, Sliema, Malta, 2017: 3-18. doi: 10.1007/978-3-319-70278-0_1.
    [21] CROCKETT E and PEIKERT C. : Functional lattice cryptography[C]. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 993-1005. doi: 10.1145/2976749. 2978402.
    [22] L PEZ-ALT A, TROMER E, and VAIKUNTANATHAN V. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption[C]. Proceedings of the 44th Symposium on Theory of Computing, New York, USA, 2012: 1219-1234. doi: 10.1145/2213977.2214086.
  • 加載中
計量
  • 文章訪問數(shù):  1527
  • HTML全文瀏覽量:  302
  • PDF下載量:  102
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-10-24
  • 修回日期:  2018-04-03
  • 刊出日期:  2018-07-19

目錄

    /

    返回文章
    返回