基于高頻角位移數(shù)據(jù)的衛(wèi)星平臺顫振檢測與影像幾何質(zhì)量補償
doi: 10.11999/JEIT170990 cstr: 32379.14.JEIT170990
-
①(中國科學院電子學研究所 北京 100190) ②(中國科學院空間信息處理與應(yīng)用系統(tǒng)技術(shù)重點實驗室 北京 100190) ③(俄亥俄州立大學土木、環(huán)境與大地測量工程系 美國哥倫布市 43210) ④(武漢大學遙感信息工程學院 武漢 430079)
國家自然科學基金(41701539, 41701540),北京市自然科學基金(4184107),國家留學基金(201704910279)
Satellite Platform Jitter Detection and Image Geometric Quality Compensation Based on High-frequency Angular Displacement Data
-
HU Kun①②③ HUANG Xu③ ZHANG Yongjun④ YOU Hongjian①②
The National Natural Science Foundation of China (41701539, 41701540), The Beijing Natural Science Foundation (4184107), The China Scholarship Council (201704910279)
-
摘要: 隨著對地觀測衛(wèi)星成像分辨率和在軌機動性能的提升,衛(wèi)星平臺姿態(tài)的高頻顫振對成像幾何質(zhì)量的影響更加顯著。鑒于傳統(tǒng)的基于分時成像數(shù)據(jù)的顫振檢測和補償方法具有密集匹配計算量大,誤差干擾程度高和無法分解各旋角方向的顫振量等缺點。該文以國產(chǎn)遙感系列光學衛(wèi)星搭載的高頻角位移設(shè)備為例,研究基于角位移高頻測姿數(shù)據(jù)的直接顫振檢測方法和影像幾何質(zhì)量補償方法。其中包括角位移數(shù)據(jù)的加窗FIR濾波預(yù)處理,在俯仰、翻滾和偏航方向隨時間變化的顫振曲線分布規(guī)律分析,以及基于角位移數(shù)據(jù)的影像直接定位補償。將高頻顫振補償應(yīng)用于衛(wèi)星平臺的姿態(tài)復(fù)原和基于嚴格成像幾何模型的幾何糾正解算。采用北京地區(qū)遙感系列光學衛(wèi)星數(shù)據(jù)的實驗結(jié)果表明,該文方法能夠顯著地改善高頻顫振檢測的精度和可靠性,有效地提高顫振補償后衛(wèi)星影像的內(nèi)部幾何質(zhì)量,其中長度變形精度提高了0.5個像素左右。
-
關(guān)鍵詞:
- 衛(wèi)星攝影測量 /
- 角位移數(shù)據(jù) /
- 高頻顫振檢測 /
- 直接定位補償 /
- 幾何質(zhì)量評價
Abstract: With the improvement of imaging resolution and on-orbit mobility of earth observation satellites, the imaging geometric quality is more apparently influenced by the attitude’s high-frequency jittering of satellite platform. The traditional time-division imaging data based jitter detection and compensation methods have many drawbacks, which include large amount of calculation and high degree of error interference in dense matching, and it is unable to decompose the jitter quantity in each rotation angle direction. This paper takes the high-frequency angular displacement equipment which is carried by China’s remote sensing optical satellite for example, studies on the direct jitter detection method and the image geometric quality compensation method based on high-frequency attitude measurement angular displacement data, which include the windowed FIR filter pre-processing of angular displacement data, the phase distribution analysis on time-dependent jitter curve in pitch, roll and yaw directions, as well as image direct positioning compensation based on angular displacement data. The high-frequency jitter compensation is applied to attitude recovery and geometric rectification based on strict imaging geometric model.The experimental results of China’ remote sensing satellite images in Beijing area illustrate that the methods proposed in this paper can significantly improve the accuracy and reliability of the high- frequency jitter detection, and can effectively improve the internal geometric quality of satellite image after jitter compensation. For example, the length deformation accuracy can be improved by 0.5 pixel. -
劉光林, 楊世洪, 吳欽章. 一種基于CCD多電極結(jié)構(gòu)的電子像移補償方法[J]. 光電子激光, 2008, 19(7): 974-951.doi: 10.3321/j.issn:1005-0086.2008.07.024. LIU Guanglin, YANG Shihong, and WU Qinzhang. An image motion compensation method based on multiphase CCD[J]. Journal of OptoelectronicsLaser, 2008, 19(7): 947-951. doi: 10.3321/j.issn:1005-0086.2008.07.024. SHI Junxia, XUE Xucheng, and GUO Yongfei. Effect of satellite vibration on imaging quality of TDICCD camera and compensation method[J]. Opto-Electronic Engineering, 2010, 37(12): 11-16. doi: 10.3969/j.issn.1003-501X.2010.12.003. XU Boqian. Study on image compensation technology for spaceborne cameras under micro-vibration circumstances[D]. [Ph.D. dissertation], Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015. FAN Chao, LI Yingcai, and YI Hongwei. Influence analysis of buffeting on image quality of TDICCD camera[J]. Acta Photonica Sinica, 2007, 36(9): 1714-1717. SUN Yang. On-orbit platform jitter effect on image quality of high-resolution remote sensor[D]. [Ph.D. dissertation], Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013. ZHU Ying, WANG Mi, PAN Jun, et al. Detection of ZY-3 satellite platform jitter using multi-spectral imagery[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4): 399-406. doi: 10.11947/j.AGCS.2015.20140024. [7] SUDEY JR J and SCHULMAN J R. In-orbit measurements of Landsat-4 thematic mapper dynamic disturbances[J]. Acta Astronautica, 1985, 12(7/8): 485-503. doi: 10.1016/0094- 5765(85)90119-5. LIU Hailong. Space camera vibration parameters detection and blurred image restoration[D]. [Ph.D. dissertation], Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015. [9] TIMONER S J and FREEMAN D M. Multi-image gradient based algorithms for motion estimation[J]. Optical Engineering, 2001, 40(9): 2003-2016. doi: 10.1117/1.1391495. [10] GADI H, YITZHAK Y, KOPEIKA N S, et al. Restoration of images captured by a staggered time-delay and integration camera in the presence of mechanical vibrations[J]. Applied Optics, 2004, 43(22): 4345-4354. doi: 10.1364/AO.43.004345. [11] HAIK O and YITZHAKY Y. Superresolution reconstruction of a video captured by a vibrated time delay and integration camera[J]. Journal of Electronic Imaging, 2006, 15(2): 113-128. doi: 10.1117/1.2194042. [12] ROQUES S, JAHAN L, ROUGE B, et al. Satellite attitude instability effects on stereo images[C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, 2004, 3: 477-480. doi: 10.1109/ ICASSP.2004.1326585. [13] AMBERG V, DECHOZ C, BERNARD L, et al. In-flight attitude perturbances estimation: Application to PLEIADES-HR satellites[C]. Proceedings of the International Society for Optical Engineering, San Diego, 2013, 8866: 886612. doi: 10.1117/12.2023275. [14] TONG Xiaohua, LI Lingyun, LIU Shijie, et al. Detection and estimation of ZY-3 three-line array image distortions caused by attitude oscillation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 291-309. doi: 10.1016/ j.isprsjprs.2015.01.003. [15] TONG Xiaohua, XU Yusheng, YE Zhen, et al. Attitude oscillation detection of the ZY-3 satellite by using multispectral parallax images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3522-3534. doi: 10.1109/TGRS.2014.2379435. SUN Tao, LONG Hui, ZHAO Dong, et al. Detection and compensation of satellite flutter based on image from multispectral camera with five spectral combinations[J]. Acta Optica Sinica, 2014, 34(7): 276-282. doi: 10.3788/AOS201434. 0728005. [17] JIANG Yonghua, ZHANG Guo, TANG Xinming, et al. Detection and correction of relative attitude errors for ZY1-02C[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7674-7683. doi: 10.1109/TGRS.2014. 2316419. TAN Tianle, ZHU Chunyan, ZHU Dongfang, et al. Overview of micro-vibration testing, isolation and suppression technology for spacecraft[J]. Aerospace Shanghai, 2014, 31(6): 36-45. doi: 10.19328/j.cnki.1006-1630.2014.06.009. [19] TOYOSHIMA M and ARAKI K. In-orbit measurements of short term attitude and vibrational environment on the engineering test satellite VI using laser communication equipment[J]. Optical Engineering, 2001, 40(5): 827-832. doi: 10.1117/1.1355976. HUO Hongqing, MA Mianjun, LI Yunpeng, et al. High precision measurement technology of satellite’s angle micro vibration[J]. Transducer and Microsystem Technologies, 2011, 30(3): 4-6. doi: 10.13873/j.1000-97872011.03.015. WANG Zeyu, ZOU Yuanjie, JIAO Anchao, et al. The jitter measurement and analysis for a remote sensing satellite platform[J]. Spacecraft Environmente Engineering, 2015, 32(3): 278-285. doi: 10.3969/j.issn.1673-1379.2015.03.010. XU Bin, LEI Bin, FAN Chengcheng, et al. A high-frequency angular displacement based internal geometric accuracy compensation method for high-resolution optical satellite images[J]. Acta Optica Sinica, 2016, 36(9): 293-300. doi: 10.3788/aos201636.0928002. -
計量
- 文章訪問數(shù): 1331
- HTML全文瀏覽量: 263
- PDF下載量: 95
- 被引次數(shù): 0