一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

融合改進(jìn)二元螢火蟲(chóng)算法和互補(bǔ)性測(cè)度的集成剪枝方法

朱旭輝 倪志偉 倪麗萍 金飛飛 程美英 李敬明

朱旭輝, 倪志偉, 倪麗萍, 金飛飛, 程美英, 李敬明. 融合改進(jìn)二元螢火蟲(chóng)算法和互補(bǔ)性測(cè)度的集成剪枝方法[J]. 電子與信息學(xué)報(bào), 2018, 40(7): 1643-1651. doi: 10.11999/JEIT170984
引用本文: 朱旭輝, 倪志偉, 倪麗萍, 金飛飛, 程美英, 李敬明. 融合改進(jìn)二元螢火蟲(chóng)算法和互補(bǔ)性測(cè)度的集成剪枝方法[J]. 電子與信息學(xué)報(bào), 2018, 40(7): 1643-1651. doi: 10.11999/JEIT170984
ZHU Xuhui, NI Zhiwei, NI Liping, JIN Feifei, CHENG Meiying, LI Jingming. Improved Binary Glowworm Swarm Optimization Combined with Complementarity Measure for Ensemble Pruning[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1643-1651. doi: 10.11999/JEIT170984
Citation: ZHU Xuhui, NI Zhiwei, NI Liping, JIN Feifei, CHENG Meiying, LI Jingming. Improved Binary Glowworm Swarm Optimization Combined with Complementarity Measure for Ensemble Pruning[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1643-1651. doi: 10.11999/JEIT170984

融合改進(jìn)二元螢火蟲(chóng)算法和互補(bǔ)性測(cè)度的集成剪枝方法

doi: 10.11999/JEIT170984 cstr: 32379.14.JEIT170984
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(91546108, 71271071, 71490725, 71301041),國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFF0202604),過(guò)程優(yōu)化與智能決策教育部重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題

詳細(xì)信息
    作者簡(jiǎn)介:

    朱旭輝: 男,1991年生,博士生,研究方向?yàn)檫M(jìn)化計(jì)算和機(jī)器學(xué)習(xí). 倪志偉: 男,1963年生,教授,研究方向?yàn)槿斯ぶ悄?、機(jī)器學(xué)習(xí)和云計(jì)算. 倪麗萍: 女,1981年生,副教授,研究方向?yàn)榉中螖?shù)據(jù)挖掘、人工智能和機(jī)器學(xué)習(xí). 金飛飛: 男,1988年生,博士生,研究方向?yàn)橹悄軟Q策和智能計(jì)算. 程美英: 女,1983年生,講師,研究方向?yàn)橹悄苡?jì)算和數(shù)據(jù)挖掘. 李敬明: 男,1979年生,講師,研究方向?yàn)橹悄苡?jì)算和數(shù)據(jù)挖掘.

  • 中圖分類(lèi)號(hào): TP391

Improved Binary Glowworm Swarm Optimization Combined with Complementarity Measure for Ensemble Pruning

Funds: 

The National Natural Science Foundation of China (91546108, 71271071, 71490725, 71301041), The National Key Research and Development Plan (2016YFF0202604), Open Research Fund Program of Key Laboratory of Process Optimization and Intelligent Decision-making

  • 摘要: 差異性和平均精度是提高分類(lèi)器集成性能的兩個(gè)重要指標(biāo)。增加差異性勢(shì)必會(huì)降低平均精度,增大平均精度一定會(huì)減小差異性。故在差異性和平均精度之間存在一個(gè)平衡狀態(tài),使得集成性能最優(yōu)。為了尋找該平衡狀態(tài),該文提出融合改進(jìn)二元螢火蟲(chóng)算法和互補(bǔ)性測(cè)度的集成剪枝方法。首先,采用bootstrap抽樣方法獨(dú)立訓(xùn)練出多個(gè)基分類(lèi)器,構(gòu)建原始基分類(lèi)器池。其次,采用互補(bǔ)性測(cè)度對(duì)原始基分類(lèi)器池進(jìn)行預(yù)剪枝。接著,通過(guò)改進(jìn)螢火蟲(chóng)的移動(dòng)方式和搜索過(guò)程,引入重新初始化機(jī)制和跳躍行為,提出改進(jìn)二元螢火蟲(chóng)算法。最后,采用改進(jìn)二元螢火蟲(chóng)算法對(duì)預(yù)剪枝后的基分類(lèi)器,進(jìn)行進(jìn)一步剪枝,選擇出集成性能最優(yōu)的基分類(lèi)器子集合。在5個(gè)UCI數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,較其他方法,使用較少的基分類(lèi)器,獲得了更優(yōu)的集成性能,具有良好的有效性和顯著性。
  • BASHBAGHI S, GRANGER E, SABOURIN R, et al. Dynamic ensembles of exemplar-SVMs for still-to-video face recognition[J]. Pattern Recognition, 2017, 69(C): 61-81. doi: 10.1016/j.patcog.2017.04.014.
    LIU Jiachen, MIAO Qiguang, CAO Ying, et al. Ensemble one-class classifiers based on hybrid diversity generation and pruning[J]. Journal of Electronics & Information Technology, 2015, 37(2): 386-393. doi: 10.11999/JEIT140161.
    [3] LI Kai, XING Junliang, HU Weiming, et al. D2C: Deep cumulatively and comparatively learning for human age estimation[J]. Pattern Recognition, 2017, 66(6): 95-105. doi: 10.1016/j.patcog.2017.01.007.
    [4] LU Huijuan, AN Chunlin, ZHENG Enhui, et al. Dissimilarity based ensemble of extreme learning machine for gene expression data classification[J]. Neurocomputing, 2014, 128(5): 22-30. doi: 10.1016/j.neucom.2013.02.052.
    YANG Chun, YIN Xucheng, HAO Hongwei, et al. Classifier ensemble with diversity: Effectiveness analysis and ensemble optimization[J]. Acta Automatica Sinica, 2014, 40(4): 660-674. doi: 10.3724/SP.J.1004.2014.00660.
    [6] YKHLEF H and BOUCHAFFRA D. An efficient ensemble pruning approach based on simple coalitional games[J]. Information Fusion, 2017, 34(C): 28-42. doi: 10.1016/j.inffus. 2016.06.003.
    [7] ZHOU Zhihua, WU Jianxin, and TANG Wei. Ensembling neural networks: many could be better than all[J]. Artificial Intelligence, 2002, 137(1): 239-263. doi: 10.1016/S0004- 3702(02)00190-X.
    [8] MARTÍNEZ-MUÑOZ G, HERNANDEZ LOBATO D, and SUAREZ A. An analysis of ensemble pruning techniques based on ordered aggregation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 245-259. doi: 10.1109/TPAMI.2008.78.
    [9] GUO Li and BOUKIR S. Margin-based ordered aggregation for ensemble pruning[J]. Pattern Recognition Letters, 2013, 34(6): 603-609. doi: 10.1016/j.patrec.2013.01.003.
    [10] DAI Qun, ZHANG Ting, and LIU Ningzhong. A new reverse reduce-error ensemble pruning algorithm[J]. Applied Soft Computing, 2015, 28(3): 237-249. doi: 10.1016/j.asoc.2014. 10.045.
    [11] ROKACH L. Collective-agreement-based pruning of ensembles[J]. Computational Statistics and Data Analysis, 2009, 53(4): 1015-1026. doi: 10.1016/j.csda.2008.12.001.
    [12] LAZAREVIC A and OBRADOVIC Z. Effective pruning of neural network classifier ensembles[C]. International Joint Conference on Neural Networks, Washington DC, USA, 2001: 796-801. doi: 10.1109/IJCNN.2001.939461.
    [13] GIACINTO G, ROLI F, and FUMERA G. Design of effective multiple classifier systems by clustering of classifiers[C]. International Conference on Pattern Recognition, Barcelona, Spain, 2000: 160-163. doi: 10.1109/ICPR.2000.906039.
    [14] BAKKER B and HESKES T. Clustering ensembles of neural network models[J]. Neural Network, 2003, 16(2): 261-269. doi: 10.1016/S0893-6080(02)00187-9.
    [15] ZHOU Hongfang, ZHAO Xuehan, and WANG Xiao. An effective ensemble pruning algorithm based on frequent patterns[J]. Knowledge-Based Systems, 2014, 56(C): 79-85. doi: 10.1016/j.knosys.2013. 10.024.
    [16] CAVALCANTI G D C, OLIVEIRA L S, NOURA T J M, et al. Combining diversity measures for ensemble pruning[J]. Pattern Recognition Letters, 2016, 74(C): 38-45. doi: 10.1016 /j.patrec.2016.01.029.
    NI Zhiwei, ZHANG Chen, and NI Liping. Haze forecast method of selective ensemble based on glowworm swarm optimization algorithm[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(2): 143-153. doi: 10.16451/j.cnki. issn1003-6059.201602006.
    [18] MARINAKI M and MARINAKI Y. A glowworm swarm optimization algorithm for the vehicle routing problem with stochastic demands[J]. Expert Systems with Applications, 2016, 46(C): 145-163. doi: 10.1016/j.eswa.2015.10.012.
    [19] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. doi: 10.1023/A:1018054314350.
    [20] SINGHAL P K, NARESH R, and SHARMA V. Binary fish swarm algorithm for profit-based unit commitment problem in competitive electricity market with ramp rate constraints [J]. IET Generation, Transmission & Distribution, 2015, 9(13): 1697-1707. doi: 10.1049/iet-gtd.2015.0201.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1253
  • HTML全文瀏覽量:  238
  • PDF下載量:  56
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-10-23
  • 修回日期:  2018-04-02
  • 刊出日期:  2018-07-19

目錄

    /

    返回文章
    返回