一種基于拓?fù)鋭?shì)的虛擬網(wǎng)絡(luò)映射算法
doi: 10.11999/JEIT170981 cstr: 32379.14.JEIT170981
-
(空軍工程大學(xué)信息與導(dǎo)航學(xué)院 西安 710077)
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61401499),陜西省自然科學(xué)基金(2015JM6340)
A Virtual Network Embedding Algorithm Based on Topology Potential
-
LIU Xinbo WANG Buhong YANG Zhixian LIU Shuaiqi
Funds:
The National Natural Science Foundation of China (61401499), Shanxi Provincial Natural Science Foundation (2015JM6340)
-
摘要: 該文針對(duì)現(xiàn)有的虛擬網(wǎng)絡(luò)映射算法對(duì)網(wǎng)絡(luò)中節(jié)點(diǎn)的拓?fù)鋵傩钥紤]不夠周到,導(dǎo)致其請(qǐng)求接受率和收益開銷比較低的問題,將物理學(xué)里的場(chǎng)論思想引入了虛擬網(wǎng)絡(luò)映射,并提出一種基于拓?fù)鋭?shì)的虛擬網(wǎng)絡(luò)映射算法。該算法在節(jié)點(diǎn)映射階段,通過計(jì)算節(jié)點(diǎn)的拓?fù)鋭?shì)、節(jié)點(diǎn)的資源能力、待映射節(jié)點(diǎn)與已映射節(jié)點(diǎn)之間的距離,將虛擬節(jié)點(diǎn)映射至最佳的物理節(jié)點(diǎn)。在鏈路映射階段,通過計(jì)算物理路徑的可用帶寬和路徑跳數(shù),將虛擬鏈路映射至最佳的物理路徑。仿真實(shí)驗(yàn)表明,該算法在多種虛擬網(wǎng)絡(luò)到達(dá)強(qiáng)度下的請(qǐng)求接受率和收益開銷比均優(yōu)于當(dāng)前的虛擬網(wǎng)絡(luò)映射算法。
-
關(guān)鍵詞:
- 網(wǎng)絡(luò)虛擬化 /
- 虛擬網(wǎng)絡(luò)映射 /
- 拓?fù)鋭?shì)
Abstract: To improve the low acceptance ratio and revenue-cost ratio caused by the negligence of the topology attribute of the nodes in the existing virtual network embedding algorithm, the theory of fields in physics is introduced into the virtual network embedding, and a Virtual Network Embedding algorithm based on Topology Potential (TP-VNE) is proposed. In the node embedding stage, the virtual node is embedded onto the optimal physical node by calculating the topology potential of the node, the resource capacity of the node, and the distance between the embedded nodes and the node to embed. In the link embedding stage, the virtual link is embedded onto the best physical path by calculating the available bandwidth of the path and the hops of the path. Experimental results show that the proposed algorithm has the higher acceptance ratio and revenue-cost ratio compared with the existing virtual network embedding algorithm in all simulation conditions. -
[2] FENG Jianyuan, ZHANG Qixun, DONG Guangzhe, et al. An approach to 5G wireless network virtualization: Architecture and trial environment[C]. IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1-6. KHOT A S, GAWAS J, and WAMAN S. Network virtualization on optical networks[C]. International Conference on Wireless Communications, Signal Processing and Networking, Chennai, India, 2016: 568-573. [3] GHODA G, MERULIYA N, PAREKH D H, et al. A survey on data center network virtualization[C]. International Conference on Computing for Sustainable Global Development, New Delhi, India, 2016: 3464-3470. [4] ALCOBER J, HESSELBACH X, OLIVA A, et al. Internet future architectures for network and media independent services and protocols[C]. International Conference on Transparent Optical Networks, Cartagena, Spain, 2013: 1-4. [5] ANDERSON T, PETERSON L, SHENKER S, et al. Overcoming the Internet impasse through virtualization[J]. Computer, 2005, 38(4): 34-41. doi: 10.1109/MC.2005.136. YU Jianjun and WU Chunming. Virtual network mapping approximation algorithm with admission control[J]. Journal of Electronics & Information Technology, 2014, 36(5): 1235-1241. doi: 10.3724/SP.J.1146.2013.00965. [7] AMALDI E, CONIGLIO S, KOSTER A M C A, et al. On the computational complexity of the virtual network embedding problem[J]. Electronic Notes in Discrete Mathematics, 2016, 52(6): 213-220. doi: 10.1016/j.endm.2016.03.028. [8] WANG Li, QU Hua, ZHAO Jihong, et al. Virtual network embedding with discrete particle swarm optimization[J]. Electronics Letters, 2014, 50(4): 285-286. doi: 10.1049/el. 2013.3202. [9] GUAN Xinjie, WAN Xili, CHOI B Y, et al. Ant colony optimization based energy efficient virtual network embedding[C]. IEEE 4th International Conference on Cloud Networking, Niagara Falls, Canada, 2015: 273-278. [10] RICCI R, ALFELD C, and LEPREAU J. A solver for the network testbed mapping problem[J]. ACM SIGCOMM Computer Communication Review, 2003, 33(2): 65-81. doi: 10.1145/956981.956988. [11] ZHU Yong and AMMAR M. Algorithms for assigning substrate network resources to virtual network components [C]. IEEE International Conference on Computer Communications, Barcelona, Spain, 2006: 1-12. [12] YU M, YI Y, REXFORD J, et al. Rethinking virtual network embedding: Substrate support for path splitting and migration[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 17-29. doi: 10.1145/1355734.1355737. [13] CHENG Xiang, SU Sen, ZHANG Zhongbao, et al. Virtual network embedding through topology-aware node ranking[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(2): 39-47. doi: 10.1145/1971162.1971168. [14] DING Jian, HUANG Tao, LIU Jiang, et al. Virtual network embedding based on real-time topological attributes[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(2): 109-118. [15] GONG Shuiqing, CHEN Jing, ZHAO Siyi, et al. Virtual network embedding with multi-attribute node ranking based on TOPSIS[J]. KSII Transactions on Internet and Information Systems, 2016, 10(2): 522-541. doi: 10.3837/tiis. 2016.02.005. [16] BIANCHI F and PRESTI FL. A markov reward model based greedy heuristic for the virtual network embedding problem[C]. IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, London, UK, 2016: 373-378. GAN Wenyan, LI Deyi, and WANG Jianmin. An hierarchical clustering method based on data fields[J]. Acta Electronica Sinica, 2006, 34(2): 258-262. [18] HE Nan, GAN Wenyan, and L I Deyi. Evaluate nodes importance in the network using data field theory[C]. International Conference on Convergence Information Technology, Gyeongju, South Korea, 2007: 1225-1230. -
計(jì)量
- 文章訪問數(shù): 1629
- HTML全文瀏覽量: 193
- PDF下載量: 58
- 被引次數(shù): 0