計算有限域GF(q)上2pn-周期序列的k-錯線性復(fù)雜度及其錯誤序列的算法
doi: 10.11999/JEIT170972 cstr: 32379.14.JEIT170972
-
①(上海大學(xué)計算機工程與科學(xué)學(xué)院 上海 200444) ②(上海大學(xué)先進研究院 上海 200444)
基金項目:
上海市自然科學(xué)基金 (16ZR1411200, 17ZR1409800),國家自然科學(xué)基金(61772022, 61572309, 61462077)
Algorithm for Computing the k-error Linear Complexity and the Corresponding Error Sequence of 2pn-periodic Sequences over GF(q)
-
NIU Zhihua①② KONG Deyu①
Funds:
Shanghai Natural Science Foundation (16ZR1411200, 17ZR1409800), The National Nature Science Foundation of China (61772022, 61572309, 61462077)
-
摘要: 序列的k-錯線性復(fù)雜度是序列線性復(fù)雜度穩(wěn)定性的重要評價指標(biāo)。在求得一個序列k-錯線性復(fù)雜度的同時,也需要求出是哪些位置的改變導(dǎo)致了序列線性復(fù)雜度的下降。該文提出一個在GF(q)上計算2pn-周期序列s的k-錯線性復(fù)雜度以及對應(yīng)的錯誤序列e的算法,這里p和q是素數(shù),且q是一個模p2的本原根。該文設(shè)計了一個追蹤代價向量的trace函數(shù),算法通過trace函數(shù)追蹤最小的代價向量來求出對應(yīng)的錯誤序列e,算法得到的序列e使得(s+e)的線性復(fù)雜度達到k-錯線性復(fù)雜度的值。
-
關(guān)鍵詞:
- 密碼學(xué) /
- 周期序列 /
- 線性復(fù)雜度 /
- k-錯線性復(fù)雜度 /
- 錯誤序列
Abstract: The k-error linear complexity of a sequence is a fundamental concept for assessing the stability of the linear complexity. After computing the k-error linear complexity of a sequence, those bits that make the linear complexity reduced also need to be computed. For 2pn-periodic sequence over GF(q) , where p and q are odd primes and q is a primitive root modulo p2, an algorithm is presented, which not only computes the k-error linear complexity of a sequence s but also gets the corresponding error sequence e. A function is designed to trace the vector cost called “trace function”, so the error sequence e can be computed by calling the “trace function”, and the linear complexity of (s+e) reaches the k-error linear complexity of the sequence s. -
MASSEY J L. Shift-register synthesis and BCH decoding [J]. IEEE Transaction on Information Theory, 1969, 15(1): 122-127. doi: 10.1109/TIT.1969.1054260. [2] DING Cunsheng, XIAO Guozhen, and SHAN Weijuan. The Stability Theory of Stream Ciphers[M]. Berlin: Springer- Verlag, 1991. DING Cunsheng and XIAO Guozhen. Stream Cipher and Applications[M]. Beijing: National Defense Industry Press, 1994: 1-275. [4] STAMP M and MARTIN C F. An algorithm for the k-error linear complexity of binary sequences with period 2n[J]. IEEE Transactions on Information Theory, 1993, 39(4): 1398-1401. doi: 10.1109/18.243455. [5] GAMES R A and CHAN A. A fast algorithm for determining the complexity of a binary sequence with period 2n[J]. IEEE Transaction on Information Theory, 1983, 29(1): 144-146. doi: 10.1109/TIT.1983.1056619. [6] LAUDER A G B and PATERSON K G. Computing the error linear complexity spectrum of a binary sequence of period 2n[J]. IEEE Transactions on Information Theory, 2003, 49(1): 273-280. doi: 10.1109/TIT.2002.806136. [7] XIAO Guozhen, WEI Shimin, LAM K Y, et al. A fast algorithm for determining the linear complexity of a sequence with period pn over GF(q)[J]. IEEE Transactions on Information Theory, 2000, 46(6): 2203-2206. doi: 10.1109/ 18.868492. [8] WEI Shimin, CHEN Zhong, and XIAO Guozhen. A fast algorithm for the k-error linear complexity of a binary sequence[C]. International Conferences on Info-tech and Info-net, Beijing, 2001: 152-157. [9] MEIDL W. Linear Complexity and k-Error Linear Complexity for pn-Periodic Sequences[M]. Basel, Birkhäuser, Coding, Cryptography and Combinatorics, 2004: 227-235. [10] TANG Miao and ZHU Shixin. On the error linear complexity spectrum of pn-periodic binary sequences[J]. Applicable Algebra in Engineering, Communication and Computing, 2013, 24(6): 497-505. doi: 10.1007/s00200-013-0210-3. [11] WEI Shimin, XIAO Guozhen, and CHEN Zhong. A fast algorithm for determining the minimal polynomial of a sequence with period 2pn over GF(q) [J]. IEEE Transactions on Information Theory, 2002, 48(10): 2754-2757. doi: 10.1109 /TIT.2002.802609. [12] ZHOU Jianqin. On the k-error linear complexity of sequences with period 2pn over GF(q)[J]. Designs Codes & Cryptography, 2011, 58(3): 279-296. doi: 10.1007/s10623-010-9379-7. [13] NIU Zhihua, LI Zhe, CHEN Zhixiong, et al. Computing the k-error linear complexity of q-ary sequences with period 2pn[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2012, E95-A(9): 1637-1641. doi: 10.1587/transfun.E95.A.1637. [14] CHEN Zhixiong, NIU Zhihua, and WU Chenhuang. On the k-error linear complexity of binary sequences derived from polynomial quotients[J]. Science China Information Sciences, 2015, 58(9): 1-15. doi: 10.1007/s11432-014-5220-7. [15] NIU Zhihua, CHEN Zhixiong, and DU Xiaoni. Linear complexity problems of level sequences of Euler quotients and their related binary sequences[J]. Science China Information Sciences, 2016, 59(3): 1-12. doi: 10.1007/s11432-015-5305-y. [16] LIU Longfei, YANG Xiaoyuan, DU Xiaoni, et al. On the k-error linear complexity of generalised cyclotomic sequences [J]. International Journal of High Performance Computing & Networking, 2016, 9(5/6): 394-400. doi: 10.1504/IJHPCN. 2016.080411. [17] LIU Longfei, YANG Xiaoyuan, DU Xiaoni, et al. On the linear complexity of new generalized cyclotomic binary sequences of order two and period pqr[J]. Tsinghua Science & Technology, 2016, 21(3): 295-301. doi: 10.1109/TST.2016. 7488740. [18] PAN Wenlun, BAO Zhenzhen, LIN Dongdai, et al. The distribution of 2n-periodic binary sequences with fixed k-error linear complexity[C]. International Conference on Information Security Practice and Experience, Zhangjiajie, China, 2016: 13-36. [19] YU Fangwen, SU Ming, WANG Gang, et al. Error decomposition algorithm for approximating the k-error linear complexity of periodic sequences[C]. IEEE TrustCom/ BigDataSE/ISPA, Tianjin, China, 2016: 505-510. [20] SALAGEAN A. On the computation of the linear complexity and the k-error linear complexity of binary sequences with period a power of two[J]. IEEE Transaction on Information Theory, 2005, 51(3): 1145-1150. doi: 10.1109/TIT.2004. 842769. [21] TANG Miao. An algorithm for computing the error sequence of pn-periodic binary sequences[J]. Applicable Algebra in Engineering, Communication and Computing, 2014, 25(3), 197-212. doi: 10.1007/s00200-014-0222-7. -
計量
- 文章訪問數(shù): 1225
- HTML全文瀏覽量: 170
- PDF下載量: 43
- 被引次數(shù): 0