基于嚴格可控理論的社交網(wǎng)絡信息傳播控制方法
doi: 10.11999/JEIT170966 cstr: 32379.14.JEIT170966
-
①(重慶郵電大學通信與信息工程學院 重慶 400065) ②(重慶市通信軟件工程技術(shù)研究中心 重慶 400065)
國家自然科學基金(61371097),重慶市科委基礎與前沿研究計劃項目(cstc2014jcyjA40039)
Information Propagation Control Method in Social Networks Based on Exact Controllability Theory
-
HUANG Hongcheng① LAI Licheng① HU Min① SUN Xinran① TAO Yang①②
The National Natural Science Foundation of China (61371097), The Foundation and Frontier Research Project of Chongqing Municipal Science and Technology Commission (cstc2014jcyjA40039)
-
摘要: 社交網(wǎng)絡信息傳播控制通過在合適的時機選擇最佳的控制點,以較小的代價實現(xiàn)對大部分甚至整個網(wǎng)絡的信息傳播控制。社交網(wǎng)絡用戶間的弱關系往往具有信息需求互補、行為取向不斷同化的特點,使其在信息擴散過程中有著不可忽視甚至爆發(fā)式的傳播作用。針對這一問題,考慮社交網(wǎng)絡強弱關系對信息傳播的影響,該文提出一種基于嚴格可控理論的信息傳播控制方法。首先,針對強關系對信息傳播的影響,提取用戶間的親密度、權(quán)威性以及互動頻率3個影響因素,構(gòu)建強度關系網(wǎng)絡。其次,考慮到信息傳播中的弱關系特性,對網(wǎng)絡中具有潛在價值的弱關系進行識別,并對強度關系網(wǎng)絡中的連邊權(quán)值加以更新。最后,利用嚴格可控理論找出網(wǎng)絡中的驅(qū)動節(jié)點組,并根據(jù)信息傳播的特征選取驅(qū)動節(jié)點集,對信息傳播進行控制。實驗結(jié)果表明,該文所提傳播控制方法能對信息傳播的促進或抑制進行有效控制,為社交網(wǎng)絡信息傳播控制提供新的方法和思路。
-
關鍵詞:
- 社交網(wǎng)絡 /
- 信息傳播 /
- 嚴格可控理論 /
- 弱關系
Abstract: In order to control the information propagation of the whole network at a lower cost, some information propagation control methods are introduced into social networks to select the best control point at a proper time. However, few work considers the weak ties between nodes to control the information propagation. Due to the characteristics of the complementation of information demand and the continuous assimilation of behavior orientation, the weak ties between nodes may be explosive in the process of information propagation, thus they can not be ignored. To solve this problem, considering the impact of strong and weak ties between nodes on information propagation, a propagation control method based on the exact controllability theory is proposed. Firstly, some strong ties between nodes, such as the node's intimacy, authority and interaction frequency are introduced to build the initial tie networks. Secondly, some potential valuable weak ties between nodes are identified and then tie networks are further updated. Finally, the exact controllability theory is used to find the driver node groups, and then the set of driver nodes are selected according to the characteristics of information propagation to control information propagation. Experimental results show that the proposed method can effectively promote or suppress the information propagation, which provides some ideas for the information propagation control in social networks. -
胡長軍, 許文文, 胡穎, 等. 在線社交網(wǎng)絡信息傳播研究綜述[J]. 電子與信息學報, 2017, 39(4): 794-804.doi: 10.11999/ JEIT161136. HU Changjun, XU Wenwen, HU Ying, et al. Review of information diffusion in online social networks[J]. Journal of Electronics & Information Technology, 2017, 39(4): 794-804. doi: 10.11999/JEIT161136. [2] ZHANG Zufan, ZHANG Porui, LIU Dan, et al. SRSM-based adaptive relay selection for D2D communications[J]. IEEE Internet of Things Journal, 2017, (99): 1. doi: 10.1109/JIOT. 2017.2749443. [3] WU Dapeng, LIU Qianru, WANG Honggang, et al. Socially aware energy-efficient mobile edge collaboration for video distribution[J]. IEEE Transaction on Multimedia, 2017, 19(10): 2197-2209. doi: 10.1109/TMM.2017.2733300. LI Jinjie, WU Lianren, QI Jiayin, et al. Research on information dissemination in online social network based on human dynamics[J]. Journal of Electronics & Information Technology, 2017, 39(4): 785-793. doi: 10.11999/JEIT160940. [5] KANDHWAY K and KURI J. Optimal resource allocation over time and degree classes for maximizing information dissemination in social networks[J]. IEEE/ACM Transactions on Networking, 2016, 24(5): 3204-3217. doi: 10.1109/TNET. 2015.2512541. [6] ZHANG Zhiwei and WANG Zhenyu. The data-driven null models for information dissemination tree in social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 484: 394-411. doi: 10.1016/j.physa.2017. 05.008. [7] DU Zhanwei, YANG Yongjian, CAI Qing, et al. Modeling and inferring mobile phone users’ negative emotion spreading in social networks[J]. Future Generation Computer Systems, 2017, 73(3): 993-942. doi: 10.1016/j.future.2017.04.015. [8] LIU Yangyu, SLOTINE J J, and BARABASI A L. Controllability of complex networks[J]. Nature, 2011, 473(7346): 167-173. doi: 10.1038/nature10011. [9] ZAÑUDO J G T, YANG G, and ALBERT R. Structure- based control of complex networks with nonlinear dynamics [J]. Proceedings of the National Academy of Sciences, 2017, 114(28): 7234-7239. doi: 10.1073/pnas.1617387114. [10] CHEN Yuzhong, WANG Lezhi , WANG Wenxu, et al. Energy scaling and reduction in controlling complex networks[J]. Royal Society Open Science, 2016, 3(4): 160064. doi: 10.1098 /rsos.160064. [11] OLSHEVSKY A. Minimal controllability problems[J]. IEEE Transactions on Control of Network Systems, 2014, 1(3): 249-258. doi: 10.1109/TCNS.2014.2337974. [12] YUAN Zhengzhong, ZHAO Chen, DI Zengru, et al. Exact controllability of complex networks[J]. Nature Communications, 2013, 4: 2447. doi: 10.1038/ncomms3447. [13] TONG Guangmo, WU Weili, TANG Shaojie, et al. Adaptive influence maximization in dynamic social networks[J]. IEEE/ACM Transactions on Networking (TON), 2017, 25(1): 112-125. doi: 10.1109/TNET.2016.2563397. [14] ROZENSHTEIN P, TATTI N, and GIONIS A. Inferring the strength of social ties: A community-driven approach[C]. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, Canada, 2017: 1017-1025. doi: 10.1145/3097983. 3098199. [15] PAGANI E, VALERIO L , and ROSSI G P. Weak social ties improve content delivery in behavior-aware opportunistic networks[J]. Ad Hoc Networks, 2015, 25: 314-329. doi: 10.1016/j.adhoc.2014.07.005. [16] ARAL S. The future of weak ties[J]. American Journal of Sociology, 2016, 121(6): 1931-1939. doi: 10.1086/686293. [17] WU Dapeng, YAN Junjie, WANG Honggang, et al. Social attribute aware incentive mechanism for Device-to-Device video distribution[J]. IEEE Transaction on Multimedia, 2017, 19(8): 1908-1920. doi: 10.1109/TMM.2017.2692648. [18] ZHAO Jichang, WU Junjie, and XU Ke. Weak ties: subtle role of information diffusion in online social networks[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2010, 82(1): 016105. doi: 10.1103/PhysRevE.82. 016105. [19] SANDSTRON G M and DUNN E W. Social interactions and well-being: The surprising power of weak ties[J]. Personality and Social Psychology Bulletin, 2014, 40(7): 910-922. doi: 10.1177/0146167214529799. [20] DE DOMENICO M, LIMA A, MOUGEL P, et al. The anatomy of a scientific rumor[J]. Scientific Reports, 2013, 3(10): 2980. doi: 10.1038/srep02980. GU Yiran and XIA Lingling. The propagation and inhibition of rumors in online social network[J]. Acta Physica Sinica, 2012, 61(23): 544-550. doi: 10.7498/aps.61.238701. -
計量
- 文章訪問數(shù): 1419
- HTML全文瀏覽量: 294
- PDF下載量: 48
- 被引次數(shù): 0