基于改進(jìn)蟻獅算法的無(wú)人機(jī)三維航跡規(guī)劃
doi: 10.11999/JEIT170961 cstr: 32379.14.JEIT170961
-
(空軍工程大學(xué)航空航天工程學(xué)院 西安 710038)
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61601505),航空科學(xué)基金(20155196022)
Three Dimensional Path Planning of UAV with Improved Ant Lion Optimizer
-
HUANG Changqiang ZHAO Kexin
Funds:
The National Natural Science Foundation of China (61601505), The Aviation Science Foundation (20155196022)
-
摘要: 無(wú)人機(jī)3維航跡規(guī)劃是任務(wù)規(guī)劃中最復(fù)雜、重要的部分,針對(duì)基本蟻獅算法在解決3維航跡規(guī)劃時(shí)能力不足的問(wèn)題,首先在螞蟻的行為中引入混沌調(diào)節(jié)因子,在蟻獅的行為中引入反調(diào)節(jié)因子,提高了算法的探索能力和開(kāi)發(fā)能力;其次在建立3維環(huán)境模型的基礎(chǔ)上,充分利用地形和約束信息,縮減搜索空間;最后將改進(jìn)后的算法應(yīng)用于3維航跡規(guī)劃,并與原算法進(jìn)行對(duì)比, 實(shí)現(xiàn)在線局部重規(guī)劃。仿真實(shí)驗(yàn)結(jié)果驗(yàn)證了改進(jìn)方法的可行性和優(yōu)越性。
-
關(guān)鍵詞:
- 無(wú)人機(jī) /
- 3維航跡規(guī)劃 /
- 改進(jìn)蟻獅算法 /
- 局部重規(guī)劃
Abstract: Unmanned Aerial Vehicle (UAV) 3D path planning is the most complex and important part of mission planning. Considering at the problem that the problem of 3D path planning can not be solved by the original algorithm perfectly, so firstly the chaotic adjustment factor and anti-regulation factor are introduced into the behavior of ant and ant lion respectively, which improves the exploration and the exploitation of algorithm. Then, in order to reduce search space ,so terrain and constraints are full used on the basis of the establishment of 3D environment model. Lastly, the improved algorithm is applied to the 3D path planning, which is compared with the original algorithm, and online local re-planning is implemented. Simulation results demonstrate the feasibility and superiority of the improved method. -
[2] CEKMEZ U, OZSIGINAN, and SAHINGOZ O K. Multi colony ant optimization for UAV path planning with obstacle[C]. International Conference on Unmanned Aircraft System, Piscataway, USA, 2016: 47-52. XU Chunfang, DUAN Haiban, and LIU Fang. Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning[J]. Aerospace Science Technology, 2010, 14(8): 535-541. doi: 10.1016/j.ast.2010-04- 008. [3] ZHANG Daqiao, XIAN Yong, LI Jie, et al. UAV path planning based on chaos ant colony algorithm[C]. International Conference on Computer Science and Mechanical Automation, Hangzhou, China, 2015: 81-85. [4] PEHLIVANOGLU Y V. A new vibrational genetic algorithm enhanced with a voronoi diagram for path planning of autonomous UAV[J]. Aerospace Science & Technology, 2015, 16(1): 47-55. doi: 10.1016/j.ast.2011.02.006. LIU Zhen, SHI Jianguo, and GAO Xiaoguang. Application of voronoi diagram in flight path planning[J]. Acta Aeronauticaet Astronautica Sinica, 2008, 29(5): 15-19. doi: 1000-6893(2008)0S15-05. [6] WU Qi, PAN Guangzhen, and YANG Jiangtao. Route planning of UAV based on voronoi diagram and dynamic and adaptive ant colony algorithm[J]. Computer Measurement and Control, 2016, 22(9): 3037-3041. doi: 1671-4598-(2014) 09-3037-04. [7] KENNEGY J and EBERHART R. Particle swarm optimization[C]. Proceedings of the IEEE International Conference on Neural Networks. Piscataway, USA, 1995: 1942-1948. [8] PENG Zhihong, LI Bo, CHEN Xiaotian, et al. Online route planning for UAV based on model predictive control and particle swarm optimization algorithm[C]. 10th World Congress on Intelligent Control and Automation, Piscataway, USA, 2015: 397-401. [9] LI Shibo, SUN Xiuxia, and XU Yuejie. Particle Swarm optimization for route planning of unmanned air vehicles[C]. Proceedings of the Congress on Information Acquisition, Weihai, China, 2006: 1213-1218. [10] FU Yangguang, DING Mingyue, and ZHOU Chengping. Routing planning for Unmanned Aerial Vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization[J]. IEEE Transactions on Systems, 2016, 43(6): 1451-1465. doi: 10.1109/TSMC.2013. 2248146. HE Pei, QU Xiangju, and WU Zhe. Aircraft referenced flight path planning by using adaptive genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6): 499-502. doi: 1000-6893(2003)06-0499-04. TIAN Jing, CHEN Yan, and SHEN Lincheng, Cooperative search algorithm for multi-UAVs in uncertainty environment [J]. Journal of Electronics & Information Technology, 2007, 29(10): 2325-2328. doi: 1009-5896(2007)10-2325-04. [13] GLABOWSKI M, MUSZNICKI B, NOWAK P, et al. An algorithm for finding shortest path tree using ant colony optimization metaheuristic[J]. Advances in Intelligent Systems and Computing, 2014, 233: 317-326. doi: 10.1007 /978-3-319-016222-1-36. [14] YAO Peng and WANG Honglun. Dynamic adaptive ant lion optimizer applied to route planning for unmanned aerial vehicle[J]. Soft Computing, 2016, 21(18): 5475-5488. doi: 10.1007/s00500- 016-2138-6. ZHANG Shuai and LI Xueren. UAV 3D real-time path planning based on dynamic step[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2745-2753. doi: 10.13700/j.bh.1001-5965.2015.0821. [16] MIRJALILII S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83(C): 80-98. doi: 10.4028/www. scientific.net/AMM.834.187. [17] YAO Pei. UAV path planning based on disturbed fluid and trajectory propagation[J]. Chinese Journal of Aeronautics, 2015, 28(4): 1163-1174. doi: 10.1016/j.neucom.2015.09.039. [18] ALZUGARAY I, TEIXEIRA L, and CHLI M. Short-term UAV path-planning with monocular-inertial SLAM in the loop[C]. IEEE International Conference on Robotics & Automation, Singapore, 2017: 1705-1713. -
計(jì)量
- 文章訪問(wèn)數(shù): 1671
- HTML全文瀏覽量: 339
- PDF下載量: 136
- 被引次數(shù): 0