一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

對流層散射超視距信道傳輸損耗快慢衰落特性研究

衛(wèi)佩佩 杜曉燕 江長蔭

衛(wèi)佩佩, 杜曉燕, 江長蔭. 對流層散射超視距信道傳輸損耗快慢衰落特性研究[J]. 電子與信息學(xué)報, 2018, 40(7): 1745-1751. doi: 10.11999/JEIT170952
引用本文: 衛(wèi)佩佩, 杜曉燕, 江長蔭. 對流層散射超視距信道傳輸損耗快慢衰落特性研究[J]. 電子與信息學(xué)報, 2018, 40(7): 1745-1751. doi: 10.11999/JEIT170952
WEI Peipei, DU Xiaoyan, JIANG Changyin. Study on Tropospheric Scatter Beyond-line-of-sight Channel Transmission Loss for Short-term and Long-term Fading[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1745-1751. doi: 10.11999/JEIT170952
Citation: WEI Peipei, DU Xiaoyan, JIANG Changyin. Study on Tropospheric Scatter Beyond-line-of-sight Channel Transmission Loss for Short-term and Long-term Fading[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1745-1751. doi: 10.11999/JEIT170952

對流層散射超視距信道傳輸損耗快慢衰落特性研究

doi: 10.11999/JEIT170952 cstr: 32379.14.JEIT170952
詳細(xì)信息
    作者簡介:

    衛(wèi)佩佩: 女,1990年生,博士生,研究方向為電波傳播、電磁計算及反演問題等. 杜曉燕: 女,1975年生,副教授,主要從事電磁場、微波技術(shù)與天線等的教學(xué)和科研工作. 江長蔭: 男,1936年生,研究員,主要從事無線電波傳播研究工作.

  • 中圖分類號: TN929.2

Study on Tropospheric Scatter Beyond-line-of-sight Channel Transmission Loss for Short-term and Long-term Fading

  • 摘要: 對流層散射通信是一種地面微波超視距傳播的重要手段。針對現(xiàn)有對流層散射傳輸損耗預(yù)測模型無法描述大氣環(huán)境等因素隨機(jī)變化問題,該文基于電場強(qiáng)度的快慢衰落特性,首次開展了傳輸損耗的快慢衰落特性研究,建立了傳輸損耗分布模型,并結(jié)合ITU-R P.617-3給出了該分布待定參數(shù)的計算方法。選取了國際電信聯(lián)盟公布的部分散射鏈路試驗數(shù)據(jù),借助正態(tài)分布的坐標(biāo)圖紙,驗證了該分布模型的有效性,結(jié)果表明傳播損耗慢衰落特性服從正態(tài)分布,可為下一步計算散射鏈路誤碼率奠定基礎(chǔ)。此外,基于分布模型還提出一種傳輸損耗預(yù)測方法,并利用試驗數(shù)據(jù)驗證了所提方法具有較好的精度,克服了現(xiàn)有方法無法計算任意概率傳輸損耗的問題。
  • ERGIN D and OZGUR B A. A ray-based channel model for MIMO troposcatter communications[C]. 2013 IEEE 24th
    International Symposium on Personal, Indoor and Mobile Radio Communications: Fundamentals and PHY Track, London, UK, 2013: 243-247.
    [2] WEI Peipei, DU Xiaoyan, YU Haiyan, et al. Troposcatter transmission loss subsection model[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017: 817-818.
    [3] ERGIN D and OZGUR B A. A ray-based channel modeling approach for MIMO troposcatter beyond-Line-of-Sight (b-LoS) communications[J]. IEEE Transactions on Communications, 2015, 63(5): 1690-1699. doi: 10.1109/ TCOMM.2015.2416716.
    ZHANG Minggao. Tropospheric Scattering Propagation[M]. Beijing: Publishing House of Electronics Industry, 2004: 8-52.
    [5] LIU Jiye and CHEN Xihong. Time synchronization for multistatic radar via microwave and troposcatter[J]. IEEE Journal of Engineering, 2017, 1(1): 1-3. doi: 10.1049/joe.2017. 0353.
    CHEN Xihong, LIU Zan, LIU Jiye, et al. Estimating tropospheric slant scatter delay at low elevation[J]. Journal of Electronics & Information Technology, 2016, 38(2): 408-412. doi: 10.11999/JEIT150628.
    WU Wenyi, CHEN Xihong, and LIU Shaowei. Real-time estimation method for tropospheric scatter slant delay at low elevation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1326-1332. doi: 10.11999/JEIT160776.
    [8] LI Lei, LIN Leke, WU Zhensen, et al. Study on the maximum calculation height and the maximum propagation angle of the troposcatter wide-angle parabolic equation method[J]. IET Microwaves, Antennas & Propagation, 2016, 10(6): 686-691. doi: 10.1049/iet-map. 2015.0293.
    [9] BOOKER H G and BETTENCOUR J T. Theory of radio transmission by tropospheric scattering using very narrow beams[J]. Proceedings of the IRE, 1955, 43(3): 281-290. doi: 10.1109/JRPROC.1955.278133.
    [10] SILVERMAN R A. Turbulent mixing theory applied to radio scattering[J]. Journal of Applied Physics, 1956, 27(7): 699-705. doi: 10.1063/1.1722469.
    [11] ERGIN D and OZGUR B A. More than the eye can see coherence time and coherence bandwidth of troposcatter links for mobile receivers[J]. 2015, 10(2): 86-92. doi: 10.1109/ MVT.2015.2410786.
    [12] CCIR Document 5/378. Data banks used for testing prediction methods[R]. [1982-1986].
    [13] LONGLE A G, REASONE R K, and FULLER V L. Measured and predicted long term distribution of tropospheric transmission loss[R]. ITS Report OT/TRER, 1971, 7.
    [14] CCIR Document 5/63. (United Kingdom) Measured transhorizon propagation data[R]. [1982-1986].
    [15] CCIR Document IWP 5/2. Prediction of interfering field strengths at UHF and SHF[R]. 1973.
    [16] NBS Technical Note No.101. Transmission loss predictions for tropospheric Communication Circuits[S]. 1967.
    [17] RECOMMENDATION ITU-R P.617-1. Propagation prediction techniques and data required for the design of trans-horizon radio-relay systems[S]. 1992.
    [18] RECOMMENDATION ITU-R P.617-3. Propagation prediction techniques and data required for the design of trans-horizon radio-relay systems[S]. 2013.
    [19] LI Lei, WU Zhensen, LIN Leke, et al. Study on the prediction of troposcatter transmission loss[J]. IEEE Transactions on Antennas & Propagation, 2016, 64(3): 1071-1079. doi: 10.1109/TAP.2016.2515125.
    LI Lei, ZHAO Zhenwei, WU Zhensen, et al. Conversion model of annual statistics to worst-month statistics of troposcatter [J]. Journal of Communication, 2016, 37(5): 81-87. doi: 10.11959/j.issn.1000-436x.2016095.
    [21] RECOMMENDATION ITU-R P.841-5. Conversion of annual statistics to worst-month satistics[S]. 2016.
    [22] MEADOWS R W. Tropospheric scatter observations at 3480Mc/s with aerials of variable spacing[J]. Proceedings of the IEE-Part B: Electronic and Communication Engineering, 1961: 349-360. doi: 10.1049/pi-b-2.1961.0061. 
    [23] RECOMMENDATION ITU-R P.1057-4. Probability distributions relevant to radiowave propagation modelling[S]. 2015.
    LIU Shengmin and XIONG Zhaofei. Tropospheric Scattering Communication Technology[M]. First Edition. Beijing: National Defense Industry Press, 1982: 57-60.
  • 加載中
計量
  • 文章訪問數(shù):  1720
  • HTML全文瀏覽量:  235
  • PDF下載量:  78
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-10-18
  • 修回日期:  2018-01-15
  • 刊出日期:  2018-07-19

目錄

    /

    返回文章
    返回