一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于Bessel先驗快速稀疏貝葉斯學習的互質(zhì)陣列DOA估計

馮明月 何明浩 陳昌孝 韓俊

馮明月, 何明浩, 陳昌孝, 韓俊. 基于Bessel先驗快速稀疏貝葉斯學習的互質(zhì)陣列DOA估計[J]. 電子與信息學報, 2018, 40(7): 1604-1611. doi: 10.11999/JEIT170951
引用本文: 馮明月, 何明浩, 陳昌孝, 韓俊. 基于Bessel先驗快速稀疏貝葉斯學習的互質(zhì)陣列DOA估計[J]. 電子與信息學報, 2018, 40(7): 1604-1611. doi: 10.11999/JEIT170951
FENG Mingyue, HE Minghao, CHEN Changxiao, HAN Jun. DOA Estimation for Co-prime Array Based on Fast Sparse Bayesian Learning Using Bessel Priors[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1604-1611. doi: 10.11999/JEIT170951
Citation: FENG Mingyue, HE Minghao, CHEN Changxiao, HAN Jun. DOA Estimation for Co-prime Array Based on Fast Sparse Bayesian Learning Using Bessel Priors[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1604-1611. doi: 10.11999/JEIT170951

基于Bessel先驗快速稀疏貝葉斯學習的互質(zhì)陣列DOA估計

doi: 10.11999/JEIT170951 cstr: 32379.14.JEIT170951
基金項目: 

國家自然科學基金(61703430),湖北省自然科學基金(2016CFB288)

詳細信息
    作者簡介:

    馮明月: 男,1988年生,博士生,研究方向為電子對抗信息處理. 何明浩: 男,1963年生,教授,博士生導師,研究方向為電子對抗信息處理. 陳昌孝: 男,1982年生,博士,研究方向為電子對抗信息處理. 韓 俊: 男,1983年生,博士,研究方向為電子對抗信息處理、雷達信號處理.

  • 中圖分類號: TN911.7

DOA Estimation for Co-prime Array Based on Fast Sparse Bayesian Learning Using Bessel Priors

Funds: 

The National Natural Science Foundation of China (61703430), The Natural Science Foundation of Hubei Province (2016CFB288)

  • 摘要: 為提高低采樣點條件下互質(zhì)陣列DOA估計精度,該文提出基于Bessel先驗快速稀疏貝葉斯學習算法。該方法針對互質(zhì)陣列輸出的多采樣點復數(shù)數(shù)據(jù),首先構(gòu)建了基于Bessel先驗的多量測分層模型;其次推導了模型所涉超參數(shù)的對數(shù)似然函數(shù),根據(jù)最大似然估計準則得到了超參數(shù)的迭代公式;最后提出了快速實現(xiàn)方案,提高了運算效率。仿真結(jié)果表明,該方法不依賴先驗信息,在低采樣點條件下具有更高的DOA估計精度和分辨率,能夠?qū)ο喔尚盘栠M行高精度DOA估計,并具有較高的運算效率。此外,該文探究了虛擬陣列擴展與互質(zhì)陣列測向自由度擴展間的關聯(lián),為后續(xù)陣列誤差條件下互質(zhì)陣列DOA研究估計提供參考。
  • [2] DAI Jisheng, BAO Xu, XU Weichao, et al. Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 46-50. doi: 10.1109/ LSP.2016.2636319.
    WANG Biao, ZHU Zhihui, and DAI Yuewei. On fast estimation of direction of arrival for underwater acoustic target based on sparse Bayesian learning[J]. Chinese Journal of Acoustics, 2017, 36(1): 102-112. doi: 10.15949/j.cnki.0217- 9776.2017.01.008.
    [3] VAIDYANATHAN P P and PAL Piya. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586. doi: 10.1109/TSP. 2010.2089682.
    [4] LIU Jianyan, ZHANG Yanmei, LU Yilong, et al. Augmented nested arrays with enhanced DOF and reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(21): 5549-5563. doi: 10.1109/TSP.2017.2736493.
    [5] BOUDAHER E, AHMAD F, AMIN M G, et al. Mutual coupling effect and compensation in non-uniform arrays for direction-of-arrival estimation[J]. Digital Signal Processing, 2017, 61(2): 3-14. doi: 10.1016/j.dsp2016.06.005.
    [6] KOOCHAKZADEH Ali and PAL Piya. Sparse source localization using perturbed arrays via bi-affine modeling[J]. Digital Signal Processing, 2017, 61(2): 15-25. doi: 10.1016/ j.dsp.2016.06.004.
    [7] HAWES Matthew, MIHAYLOVA Lyudmila, SEPTIER Francois, et al. Bayesian compressive sensing approaches for direction of arrival estimation with mutual coupling effects[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1357-1368. doi: 10.1109/TAP.2017.2655013.
    [8] LIU Sheng, YANG Lisheng, CHEN Zhixiang, et al. Low- complexity MUSIC-like algorithm with sparse array[J]. Wireless Personal Communications, 2016, 86(3): 1265-1279. doi: 10.1007/s11277-015-2987-9.
    [9] LIU Chunlin and VAIDYANATHAN P P. Correlation subspaces: Generalizations and connection to difference coarrays[J]. IEEE Transactions on Signal Processing, 2017, 65(19): 5006-5020. doi: 10.1109/TSP.2017.2721915.
    [10] GIRI Ritwik and RAO Bhaskar. Learning distributional parameters for adaptive Bayesian sparse signal recovery[J]. IEEE Computational Intelligence Magazine, 2016, 11(4): 14-23. doi: 10.1109/MCI.2016.2601700.
    [11] TIPPING M E and FAUL A C. Fast marginal likelihood maximisation for sparse Bayesian models[C]. Proceedings of the Ninth International Workshop on Articial Intelligence and Statistics, Key West, FL, 2003: 1-13.
    [12] BABACAN S. Derin, MOLINA Rafael, and KATSAGGELOS A K. Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1): 53-63. doi: 10.1109/TIP.2009.2032894.
    WANG Jun, YAN Fenggang, MA Wenjie, et al. Direction- of-arrival estimation using Laplace prior based on Bayes compressive sensing[J]. Journal of Electonics & Information Technology, 2015, 37(4): 817-823. doi: 10.11999/JEIT 140937.
    [14] GERSTOFT P, MECKLENBRAUKER C F, XENAKI A, et al. Multisnapshot sparse Bayesian learning for DOA[J]. IEEE Signal Processing Letters, 2016, 23(10): 1469-1473. doi: 10.1109/LSP.2016.2598550.
    [15] PEDERSEN N L, MANCH?N C N, BADIU M A, et al. Sparse estimation using Bayesian hierarchical prior modeling for real and complex models[J]. Signal Processing, 2015, 115(41): 94-109. doi: 10.1016/j.sigpro.2015.03.013.
    [16] QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377-1390. doi: 10.1109/TSP.2015.2393838.
    [17] SAHOO S K and MAKUR A. Signal recovery from random measurements via extended orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2015, 63(10): 2572-2582. doi: 10.1109/TSP.2015.2413384.
    [18] CARLIN M, ROCCA P, OLIVERI G, et al. Directions-of- Arrival estimation through Bayesian compressive sensing strategies[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3828-3838. doi: 10.1109/TAP.2013. 2256093.
    [19] JI Shihao, DUNSON D, and CARIN L. Multitask compressive sensing[J]. IEEE Transations on Signal Processing, 2009, 57(1): 92-106. doi: 10.1109/TSP.2008. 2005866.
  • 加載中
計量
  • 文章訪問數(shù):  1512
  • HTML全文瀏覽量:  186
  • PDF下載量:  98
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-10-16
  • 修回日期:  2018-01-16
  • 刊出日期:  2018-07-19

目錄

    /

    返回文章
    返回