基于Bessel先驗快速稀疏貝葉斯學習的互質(zhì)陣列DOA估計
doi: 10.11999/JEIT170951 cstr: 32379.14.JEIT170951
-
(空軍預警學院 武漢 430019)
基金項目:
國家自然科學基金(61703430),湖北省自然科學基金(2016CFB288)
DOA Estimation for Co-prime Array Based on Fast Sparse Bayesian Learning Using Bessel Priors
-
FENG Mingyue HE Minghao CHEN Changxiao HAN Jun
Funds:
The National Natural Science Foundation of China (61703430), The Natural Science Foundation of Hubei Province (2016CFB288)
-
摘要: 為提高低采樣點條件下互質(zhì)陣列DOA估計精度,該文提出基于Bessel先驗快速稀疏貝葉斯學習算法。該方法針對互質(zhì)陣列輸出的多采樣點復數(shù)數(shù)據(jù),首先構(gòu)建了基于Bessel先驗的多量測分層模型;其次推導了模型所涉超參數(shù)的對數(shù)似然函數(shù),根據(jù)最大似然估計準則得到了超參數(shù)的迭代公式;最后提出了快速實現(xiàn)方案,提高了運算效率。仿真結(jié)果表明,該方法不依賴先驗信息,在低采樣點條件下具有更高的DOA估計精度和分辨率,能夠?qū)ο喔尚盘栠M行高精度DOA估計,并具有較高的運算效率。此外,該文探究了虛擬陣列擴展與互質(zhì)陣列測向自由度擴展間的關聯(lián),為后續(xù)陣列誤差條件下互質(zhì)陣列DOA研究估計提供參考。Abstract: In order to improve DOA estimation accuracy of co-prime array while the number of snapshots is small, a novel fast Sparse Bayesian Learning (SBL) algorithm using Bessel priors is proposed. Focusing on the multi-snapshots complex output data of coprime array, a multiple measurement vectors hierarchical model based on Bessel priors is firstly built. Then the log-likelihood function of model hyperparameters is derived, and the iterative formulas of hyperparameters are derived based on the criterion of maximum likelihood estimation. Finally, a fast implementation scheme is developed in order to improve the computation efficiency. Simulation experiments show that the proposed algorithm is independent on prior information. Under the condition of small number of snapshots, higher DOA estimation accuracy and resolution of uncorrelated and correlated signals can be achieved with proper computational efficiency. Further more, the necessity between virtual array extension and DOA estimation freedom of co-prime array is explored, which provides reference to DOA estimation for co-prime array under array perturbation conditions.
-
[2] DAI Jisheng, BAO Xu, XU Weichao, et al. Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 46-50. doi: 10.1109/ LSP.2016.2636319. WANG Biao, ZHU Zhihui, and DAI Yuewei. On fast estimation of direction of arrival for underwater acoustic target based on sparse Bayesian learning[J]. Chinese Journal of Acoustics, 2017, 36(1): 102-112. doi: 10.15949/j.cnki.0217- 9776.2017.01.008. [3] VAIDYANATHAN P P and PAL Piya. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586. doi: 10.1109/TSP. 2010.2089682. [4] LIU Jianyan, ZHANG Yanmei, LU Yilong, et al. Augmented nested arrays with enhanced DOF and reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(21): 5549-5563. doi: 10.1109/TSP.2017.2736493. [5] BOUDAHER E, AHMAD F, AMIN M G, et al. Mutual coupling effect and compensation in non-uniform arrays for direction-of-arrival estimation[J]. Digital Signal Processing, 2017, 61(2): 3-14. doi: 10.1016/j.dsp2016.06.005. [6] KOOCHAKZADEH Ali and PAL Piya. Sparse source localization using perturbed arrays via bi-affine modeling[J]. Digital Signal Processing, 2017, 61(2): 15-25. doi: 10.1016/ j.dsp.2016.06.004. [7] HAWES Matthew, MIHAYLOVA Lyudmila, SEPTIER Francois, et al. Bayesian compressive sensing approaches for direction of arrival estimation with mutual coupling effects[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1357-1368. doi: 10.1109/TAP.2017.2655013. [8] LIU Sheng, YANG Lisheng, CHEN Zhixiang, et al. Low- complexity MUSIC-like algorithm with sparse array[J]. Wireless Personal Communications, 2016, 86(3): 1265-1279. doi: 10.1007/s11277-015-2987-9. [9] LIU Chunlin and VAIDYANATHAN P P. Correlation subspaces: Generalizations and connection to difference coarrays[J]. IEEE Transactions on Signal Processing, 2017, 65(19): 5006-5020. doi: 10.1109/TSP.2017.2721915. [10] GIRI Ritwik and RAO Bhaskar. Learning distributional parameters for adaptive Bayesian sparse signal recovery[J]. IEEE Computational Intelligence Magazine, 2016, 11(4): 14-23. doi: 10.1109/MCI.2016.2601700. [11] TIPPING M E and FAUL A C. Fast marginal likelihood maximisation for sparse Bayesian models[C]. Proceedings of the Ninth International Workshop on Articial Intelligence and Statistics, Key West, FL, 2003: 1-13. [12] BABACAN S. Derin, MOLINA Rafael, and KATSAGGELOS A K. Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1): 53-63. doi: 10.1109/TIP.2009.2032894. WANG Jun, YAN Fenggang, MA Wenjie, et al. Direction- of-arrival estimation using Laplace prior based on Bayes compressive sensing[J]. Journal of Electonics & Information Technology, 2015, 37(4): 817-823. doi: 10.11999/JEIT 140937. [14] GERSTOFT P, MECKLENBRAUKER C F, XENAKI A, et al. Multisnapshot sparse Bayesian learning for DOA[J]. IEEE Signal Processing Letters, 2016, 23(10): 1469-1473. doi: 10.1109/LSP.2016.2598550. [15] PEDERSEN N L, MANCH?N C N, BADIU M A, et al. Sparse estimation using Bayesian hierarchical prior modeling for real and complex models[J]. Signal Processing, 2015, 115(41): 94-109. doi: 10.1016/j.sigpro.2015.03.013. [16] QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377-1390. doi: 10.1109/TSP.2015.2393838. [17] SAHOO S K and MAKUR A. Signal recovery from random measurements via extended orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2015, 63(10): 2572-2582. doi: 10.1109/TSP.2015.2413384. [18] CARLIN M, ROCCA P, OLIVERI G, et al. Directions-of- Arrival estimation through Bayesian compressive sensing strategies[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3828-3838. doi: 10.1109/TAP.2013. 2256093. [19] JI Shihao, DUNSON D, and CARIN L. Multitask compressive sensing[J]. IEEE Transations on Signal Processing, 2009, 57(1): 92-106. doi: 10.1109/TSP.2008. 2005866. -
計量
- 文章訪問數(shù): 1512
- HTML全文瀏覽量: 186
- PDF下載量: 98
- 被引次數(shù): 0