基于典型相關(guān)性分析的稀疏表示目標(biāo)追蹤
doi: 10.11999/JEIT170939 cstr: 32379.14.JEIT170939
-
①(南京郵電大學(xué)物聯(lián)網(wǎng)學(xué)院 南京 210003) ②(南京郵電大學(xué)江蘇省通信與網(wǎng)絡(luò)技術(shù)工程研究中心 南京 210003) ③(南京郵電大學(xué)通信與信息工程學(xué)院 南京 210003)
國(guó)家自然科學(xué)基金(61771256, 61471205, 61771258, 61701252),江蘇省自然科學(xué)基金青年基金(BK20170915),江蘇省高校自然科學(xué)面上項(xiàng)目(17KJD510005),南京郵電大學(xué)引進(jìn)人才啟動(dòng)基金(NY 216023),南京郵電大學(xué)江蘇省通信與網(wǎng)絡(luò)技術(shù)工程研究中心開放課題
Canonical Correlation Analysis Based Sparse Representation Model for Robust Visual Tracking
-
KANG Bin①② CAO Wenwen③ YAN Jun③ ZHANG Suofei①
The National Natural Science Foundation of China (61771256, 61471205, 61771258, 61701252), The Natural Science Foundation of Jiangsu Province (BK20170915), The Natural Science Foundation of Jiangsu Higher Education Institutions (17KJD510005), The Nanjing University of Posts and Telecommunications Program (NY 216023), Supported by Open Research Fund of Jiangsu Engineering Research Center of Communication and Network Technology, Nanjing University of Posts and Telecommunications
-
摘要: 傳統(tǒng)稀疏表示目標(biāo)追蹤算法首先通過(guò)粒子濾波方法對(duì)狀態(tài)粒子進(jìn)行采樣,然后利用灰度特征表征采樣粒子觀測(cè)向量,最后構(gòu)造基于觀測(cè)向量的稀疏表示模型來(lái)進(jìn)行目標(biāo)追蹤。與傳統(tǒng)稀疏表示模型不同,該文提出一個(gè)基于典型相關(guān)性分析的稀疏表示模型,此模型首先使用兩種特征來(lái)表征粒子觀測(cè)向量,然后對(duì)兩種觀測(cè)向量的子空間投影結(jié)果進(jìn)行稀疏建模。所構(gòu)建的模型可通過(guò)在子空間中探究特征間的相關(guān)性來(lái)實(shí)現(xiàn)不同特征的互補(bǔ)融合,提升稀疏表示模型在復(fù)雜監(jiān)控環(huán)境下的魯棒性。
-
關(guān)鍵詞:
- 目標(biāo)追蹤 /
- 稀疏表示 /
- 典型相關(guān)性分析
Abstract: In traditional sparse representation based visual tracking, particle sampling is first achieved by particle filter method. Then the particle observations are represented by intensity feature. Finally, the visual tracking is achieved by the intensity feature based sparse representation model. Different from traditional sparse representation model, a canonical correlation analysis based sparse representation model is proposed in this paper. The proposed model first uses two kinds of features to represent the particle observations, then, the projections of particle observations are used to build the sparse representation model. The advantage of the proposed model lies in that it can give a proper multi-feature fusing through canonical correlation analysis, which explores the relation between two features in a latent common subspace. -
[2] ROSS D A, LIM Jongwoo, LIN Rueisung, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1/3): 125141. doi: 10.1007/ s11263-007-0075-7. ZDENEK K, KRYSTIAN M, and JIRI M. Tracking- learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422. doi: 10.1109/TPAMI.2011.239. [3] ZHANNG Shengping, YAO Hongxun, SUN Xin, et al. Sparse coding based visual tracking: Review and experimental comparison[J]. Pattern Recognition, 2013, 46(7): 1772-1788. doi: 10.1016/j.patcog.2012.10.006. [4] JOHN W, YANG A, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. doi: 10.1109/TPAMI.2008.79. [5] MEI Xue and LING Haibin. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 1257-1264. doi: 10.1109/TPAMI.2011.66. [6] BAO Chenglong, WU Yi, LING Haibin, et al. Real time robust tracker using accelerated proximal gradient approach [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1830-1837. doi: 10.1109/CVPR.2012.6247881. [7] LI Hanxi, SHEN Chunhua, and SHI Qinfeng. Real-time visual tracking using compressive sensing[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, 2011, 42(7): 1305-1312. doi: 10.1109/CVPR.2011.5995483. [8] ZHANG Tianzhu, GHANEM Bernard, LIU Si, et al. Robust visual tracking via structured multi-task sparse learning[J]. International Journal of Computer Vision, 2013, 101(2): 367383. doi: 10.1007/s11263-012-0582-z. [9] ZHANG Tianzhu, LIU Si, AHUJA Narendra, et al. Robust visual tracking via consistent low-rank sparse learning[J]. International Journal of Computer Vision, 2015, 111(2): 171190. doi: 10.1007/s11263-014-0738-0. [10] WANG Dong, LU Huchuan, BO Chunjuan, et al. Online visual tracking via two view sparse representation[J]. IEEE Signal Processing Letters, 2014, 21(9): 1031-1034. doi: 10.1109/LSP.2014.2322389. [11] BAI Tianxiang, LI Youfu, and ZHOU Xiaolong. Learning local appearances with sparse representation for robust and fast visual tracking[J]. IEEE Transactions on Cybernetics, 2015, 45(4): 663-675. doi: 10.1109/TCYB.2014.2332279. [12] FAN Heng and XIANG Jinhai. Robust visual tracking with multitask joint dictionary learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(5): 1018-1030. doi: 10.1109/TCSVT.2016.2515738. [13] ZHOU Yun, HAN Jianghong, YUAN Xiaohui, et al. Inverse sparse group Lasso model for robust object tracking[J]. IEEE Transactions on Multimedia, 2017, 19(8): 1798-1810. doi: 10.1109/TMM.2017.2689918. [14] AKAHO Shotaro. A kernel method for canonical correlation analysis[C]. Proceedings of the International Meeting of Psychometric Society, Tsukuba, 2006: 263-269. [15] YUAN Xiaodong, LIU Xiaobai, and YAN Shuicheng. Visual classification with multitask joint sparse representation[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4349-4360. doi: 10.1109/TIP.2012.2205006. [16] SCHMIDT M W, BERG E Van Den, FRIEDLANDER M, et al. Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithm[C]. Proceedings of the International Conference on Artificial Intelligence and Statistics, Clearwater Beach, 2009: 355-357. [18] HENRIQUES J F, CASEIRO Rui, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernel[C]. Proceedings of the European Conference on Computer Vision, Florence, 2012: 702715. doi: 10.1007/ 978-3-642-33765-9_50. [19] ZHANG Kaihua, ZHANG Lei, and YANG Ming-hsuan. Real-time compressive tracking[C]. Proceedings of the European Conference on Computer Vision, Florence, 2012: 864877. doi: 10.1007/978-3-642-33712-3_62. [20] OMANICIU D, RAMESH V, and MEER P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. doi: 10.1109 /TPAMI.2003.1195991. [21] BABENKO B, YANG Ming-hsuan, and BELONGIE S. Visual tracking with online multiple instance learning[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, 2009: 983-990. doi: 10.1109 /CVPR.2009.5206737. [22] HARE S, SAFFARI A, and TORR P H S. Struck: Structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096-2109. doi: 10.1109/TPAMI.2015.2509974. [23] KWON Junseok and LEE Kyoung. Visual tracking decomposition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010: 1269-1276. doi: 10.1109/CVPR.2010.5539821. [24] ADAM A, RIVLIN E, and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006: 798-805. doi: 10.1109/CVPR.2006.256. [25] GRABNER H, GRABNER M, and BISCHOF H. Real-time tracking via on-line boosting[C]. Proceedings of the British Machine Vision Conference, Edinburgh, 2006: 47-56. -
計(jì)量
- 文章訪問(wèn)數(shù): 1657
- HTML全文瀏覽量: 176
- PDF下載量: 61
- 被引次數(shù): 0