一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于典型相關(guān)性分析的稀疏表示目標(biāo)追蹤

康彬 曹雯雯 顏俊 張索非

康彬, 曹雯雯, 顏俊, 張索非. 基于典型相關(guān)性分析的稀疏表示目標(biāo)追蹤[J]. 電子與信息學(xué)報(bào), 2018, 40(7): 1619-1626. doi: 10.11999/JEIT170939
引用本文: 康彬, 曹雯雯, 顏俊, 張索非. 基于典型相關(guān)性分析的稀疏表示目標(biāo)追蹤[J]. 電子與信息學(xué)報(bào), 2018, 40(7): 1619-1626. doi: 10.11999/JEIT170939
KANG Bin, CAO Wenwen, YAN Jun, ZHANG Suofei. Canonical Correlation Analysis Based Sparse Representation Model for Robust Visual Tracking[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1619-1626. doi: 10.11999/JEIT170939
Citation: KANG Bin, CAO Wenwen, YAN Jun, ZHANG Suofei. Canonical Correlation Analysis Based Sparse Representation Model for Robust Visual Tracking[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1619-1626. doi: 10.11999/JEIT170939

基于典型相關(guān)性分析的稀疏表示目標(biāo)追蹤

doi: 10.11999/JEIT170939 cstr: 32379.14.JEIT170939
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61771256, 61471205, 61771258, 61701252),江蘇省自然科學(xué)基金青年基金(BK20170915),江蘇省高校自然科學(xué)面上項(xiàng)目(17KJD510005),南京郵電大學(xué)引進(jìn)人才啟動(dòng)基金(NY 216023),南京郵電大學(xué)江蘇省通信與網(wǎng)絡(luò)技術(shù)工程研究中心開放課題

詳細(xì)信息
    作者簡(jiǎn)介:

    康彬:康 彬: 男,1985年生,講師,研究方向?yàn)橄∈璞硎纠碚摗⒛繕?biāo)檢測(cè)以及追蹤等. 曹雯雯: 女,1993年生,碩士生,研究方向?yàn)橹悄苄盘?hào)處理. 顏 ?。? 男,1981年生,副教授, 研究方向?yàn)橹悄苄盘?hào)處理. 張索非: 男,1982年生,講師,研究方向?yàn)槟繕?biāo)檢測(cè)以及追蹤.

  • 中圖分類號(hào): TP391

Canonical Correlation Analysis Based Sparse Representation Model for Robust Visual Tracking

Funds: 

The National Natural Science Foundation of China (61771256, 61471205, 61771258, 61701252), The Natural Science Foundation of Jiangsu Province (BK20170915), The Natural Science Foundation of Jiangsu Higher Education Institutions (17KJD510005), The Nanjing University of Posts and Telecommunications Program (NY 216023), Supported by Open Research Fund of Jiangsu Engineering Research Center of Communication and Network Technology, Nanjing University of Posts and Telecommunications

  • 摘要: 傳統(tǒng)稀疏表示目標(biāo)追蹤算法首先通過(guò)粒子濾波方法對(duì)狀態(tài)粒子進(jìn)行采樣,然后利用灰度特征表征采樣粒子觀測(cè)向量,最后構(gòu)造基于觀測(cè)向量的稀疏表示模型來(lái)進(jìn)行目標(biāo)追蹤。與傳統(tǒng)稀疏表示模型不同,該文提出一個(gè)基于典型相關(guān)性分析的稀疏表示模型,此模型首先使用兩種特征來(lái)表征粒子觀測(cè)向量,然后對(duì)兩種觀測(cè)向量的子空間投影結(jié)果進(jìn)行稀疏建模。所構(gòu)建的模型可通過(guò)在子空間中探究特征間的相關(guān)性來(lái)實(shí)現(xiàn)不同特征的互補(bǔ)融合,提升稀疏表示模型在復(fù)雜監(jiān)控環(huán)境下的魯棒性。
  • [2] ROSS D A, LIM Jongwoo, LIN Rueisung, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1/3): 125141. doi: 10.1007/ s11263-007-0075-7.
    ZDENEK K, KRYSTIAN M, and JIRI M. Tracking- learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422. doi: 10.1109/TPAMI.2011.239.
    [3] ZHANNG Shengping, YAO Hongxun, SUN Xin, et al. Sparse coding based visual tracking: Review and experimental comparison[J]. Pattern Recognition, 2013, 46(7): 1772-1788. doi: 10.1016/j.patcog.2012.10.006.
    [4] JOHN W, YANG A, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. doi: 10.1109/TPAMI.2008.79.
    [5] MEI Xue and LING Haibin. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 1257-1264. doi: 10.1109/TPAMI.2011.66.
    [6] BAO Chenglong, WU Yi, LING Haibin, et al. Real time robust tracker using accelerated proximal gradient approach [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1830-1837. doi: 10.1109/CVPR.2012.6247881.
    [7] LI Hanxi, SHEN Chunhua, and SHI Qinfeng. Real-time visual tracking using compressive sensing[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, 2011, 42(7): 1305-1312. doi: 10.1109/CVPR.2011.5995483.
    [8] ZHANG Tianzhu, GHANEM Bernard, LIU Si, et al. Robust visual tracking via structured multi-task sparse learning[J]. International Journal of Computer Vision, 2013, 101(2): 367383. doi: 10.1007/s11263-012-0582-z.
    [9] ZHANG Tianzhu, LIU Si, AHUJA Narendra, et al. Robust visual tracking via consistent low-rank sparse learning[J]. International Journal of Computer Vision, 2015, 111(2): 171190. doi: 10.1007/s11263-014-0738-0.
    [10] WANG Dong, LU Huchuan, BO Chunjuan, et al. Online visual tracking via two view sparse representation[J]. IEEE Signal Processing Letters, 2014, 21(9): 1031-1034. doi: 10.1109/LSP.2014.2322389.
    [11] BAI Tianxiang, LI Youfu, and ZHOU Xiaolong. Learning local appearances with sparse representation for robust and fast visual tracking[J]. IEEE Transactions on Cybernetics, 2015, 45(4): 663-675. doi: 10.1109/TCYB.2014.2332279.
    [12] FAN Heng and XIANG Jinhai. Robust visual tracking with multitask joint dictionary learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(5): 1018-1030. doi: 10.1109/TCSVT.2016.2515738.
    [13] ZHOU Yun, HAN Jianghong, YUAN Xiaohui, et al. Inverse sparse group Lasso model for robust object tracking[J]. IEEE Transactions on Multimedia, 2017, 19(8): 1798-1810. doi: 10.1109/TMM.2017.2689918.
    [14] AKAHO Shotaro. A kernel method for canonical correlation analysis[C]. Proceedings of the International Meeting of Psychometric Society, Tsukuba, 2006: 263-269.
    [15] YUAN Xiaodong, LIU Xiaobai, and YAN Shuicheng. Visual classification with multitask joint sparse representation[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4349-4360. doi: 10.1109/TIP.2012.2205006.
    [16] SCHMIDT M W, BERG E Van Den, FRIEDLANDER M, et al. Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithm[C]. Proceedings of the International Conference on Artificial Intelligence and Statistics, Clearwater Beach, 2009: 355-357.
    [18] HENRIQUES J F, CASEIRO Rui, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernel[C]. Proceedings of the European Conference on Computer Vision, Florence, 2012: 702715. doi: 10.1007/ 978-3-642-33765-9_50.
    [19] ZHANG Kaihua, ZHANG Lei, and YANG Ming-hsuan. Real-time compressive tracking[C]. Proceedings of the European Conference on Computer Vision, Florence, 2012: 864877. doi: 10.1007/978-3-642-33712-3_62.
    [20] OMANICIU D, RAMESH V, and MEER P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. doi: 10.1109 /TPAMI.2003.1195991.
    [21] BABENKO B, YANG Ming-hsuan, and BELONGIE S. Visual tracking with online multiple instance learning[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, 2009: 983-990. doi: 10.1109 /CVPR.2009.5206737.
    [22] HARE S, SAFFARI A, and TORR P H S. Struck: Structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096-2109. doi: 10.1109/TPAMI.2015.2509974.
    [23] KWON Junseok and LEE Kyoung. Visual tracking decomposition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010: 1269-1276. doi: 10.1109/CVPR.2010.5539821.
    [24] ADAM A, RIVLIN E, and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006: 798-805. doi: 10.1109/CVPR.2006.256.
    [25] GRABNER H, GRABNER M, and BISCHOF H. Real-time tracking via on-line boosting[C]. Proceedings of the British Machine Vision Conference, Edinburgh, 2006: 47-56.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1657
  • HTML全文瀏覽量:  176
  • PDF下載量:  61
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-10-11
  • 修回日期:  2018-03-14
  • 刊出日期:  2018-07-19

目錄

    /

    返回文章
    返回