一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于序列間先驗(yàn)約束和多視角信息融合的肝臟CT圖像分割

彭佳林 揭萍

彭佳林, 揭萍. 基于序列間先驗(yàn)約束和多視角信息融合的肝臟CT圖像分割[J]. 電子與信息學(xué)報(bào), 2018, 40(4): 971-978. doi: 10.11999/JEIT170933
引用本文: 彭佳林, 揭萍. 基于序列間先驗(yàn)約束和多視角信息融合的肝臟CT圖像分割[J]. 電子與信息學(xué)報(bào), 2018, 40(4): 971-978. doi: 10.11999/JEIT170933
PENG Jialin, JIE Ping . Liver Segmentation from CT Image Based on Sequential Constraint and Multi-view Information Fusion[J]. Journal of Electronics & Information Technology, 2018, 40(4): 971-978. doi: 10.11999/JEIT170933
Citation: PENG Jialin, JIE Ping . Liver Segmentation from CT Image Based on Sequential Constraint and Multi-view Information Fusion[J]. Journal of Electronics & Information Technology, 2018, 40(4): 971-978. doi: 10.11999/JEIT170933

基于序列間先驗(yàn)約束和多視角信息融合的肝臟CT圖像分割

doi: 10.11999/JEIT170933 cstr: 32379.14.JEIT170933
基金項(xiàng)目: 

國家自然科學(xué)基金(11771160, 11401231),福建省自然科學(xué)基金面上項(xiàng)目(2015J01254),華僑大學(xué)中青年教師科技創(chuàng)新資助計(jì)劃項(xiàng)目(ZQN-PY411)

Liver Segmentation from CT Image Based on Sequential Constraint and Multi-view Information Fusion

Funds: 

The National Natural Science Foundation of China (11771160, 11401231), The Natural Science Foundation of Fujian Province (2015J01254), The Research Promotion Program of Huaqiao University (ZQN-PY411)

  • 摘要: 醫(yī)學(xué)電子計(jì)算機(jī)斷層掃描(CT)序列圖像中肝臟的準(zhǔn)確分割是實(shí)現(xiàn)計(jì)算機(jī)輔助肝手術(shù)的重要前提,然而圖像中存在的組織病變、邊界模糊或缺失、不同組織間的粘連給肝臟分割帶來極大挑戰(zhàn)。針對這些問題,該文提出一種基于圖像序列間先驗(yàn)約束的半自動分割方法,并進(jìn)一步采取了多視角信息融合的方式實(shí)現(xiàn)肝臟的準(zhǔn)確分割。該方法的優(yōu)勢在于無需大量數(shù)據(jù)的收集和復(fù)雜的先驗(yàn)訓(xùn)練。在Sliver07公開數(shù)據(jù)集合的驗(yàn)證結(jié)果顯示,和領(lǐng)域內(nèi)主要方法相比,該方法具有較高的分割準(zhǔn)確度,特別是當(dāng)肝臟區(qū)域存在病灶、邊界模糊或缺失的情況下具有明顯提升。
  • HEIMANN T, MEINZER H, and WOLF I. A statistical deformable model for the segmentation of liver CT volumes [C]. MICCAI Workshop 3-D Segmentation Clinic Grand Challenge, Brisbane, Australia, 2007: 161-166.
    KAINMULLER D, LANGE T, and LAMECKER H. Shape constrained automatic segmentation of the liver based on a heuristic intensity model[C]. MICCAI Workshop 3-D Segmentation Clinic Grand Challenge, Brisbane, Australia, 2007: 109-116.
    HEIMANN T and MEINZER H P. Statistical shape models for 3D medical image segmentation: a review[J]. Medical Image Analysis, 2009, 13(4): 543-563. doi: 10.1016/j.media. 2009.05.004.
    LI G, CHEN X, SHI F, et al. Automatic liver segmentation based on shape constraints and deformable graph cut in CT images[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5315-5329. doi: 10.1109/TIP.2015.2481326.
    PLATERO C and TOBAR M C. A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans[J]. Computational and Mathematical Methods in Medicine, 2014, 2014: 182909. doi: 10.1155/2014/182909.
    HU P, WU F, PENG J, et al. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution[J]. Physics in Medicine and Biology, 2016, 61(24): 8676-8698. doi: 10.1088/1361-6560/61/24/8676.
    LU F, WU F, HU P, et al. Automatic 3D liver location and segmentation via convolutional neural network and graph cut [J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(2): 171-182. doi: 10.1007/s11548-016- 1467-3.
    ZHENG Y, AI D, MU J, et al. Automatic liver segmentation based on appearance and context information[J]. Biomedical Engineering Online, 2017, 16(1): 16-28. doi: 10.1186/s12938- 016-0296-5.
    HEIMANN T, GINNEKEN B V, STYNER M A, et al. Comparison and evaluation of methods for liver segmentation from CT datasets[J]. IEEE Transactions on Medical Imaging, 2009, 28(8): 1251-1265. doi: 10.1109/TMI.2009.2013851.
    ZHENG S, FANF B, LI L, et al. A novel variational method for liver segmentation based on statistical shape model prior and enforced local statistical feature[C]. IEEE International Symposium on Biomedical Imaging, Melbournr, Australia, 2017: 261-264. doi: 10.1109/ISBI.2017.7950515.
    SHI C, CHENG Y, LIU F, et al. A hierarchical local region- based sparse shape composition for liver segmentation in CT scans[J]. Pattern Recognition, 2016, 50(C): 88-106. doi: 10.1016/j.patcog.2015.09.001.
    RUSKO L, BEKES G, and FIDRICH M. Automatic segmentation of the liver from multi and single-phase contrast-enhanced CT images[J]. Medical Image Analysis, 2009, 13(6): 871-882. doi: 10.1016/j.media.2009.07.009.
    AFIFI A and NAKAGUCHI T. Liver segmentation approach using graph cuts and iteratively estimated shape and intensity constrains[C]. Medical Image Computing and Computer-Assisted Intervention, Nice, France, 2012, 7511: 395-403.
    CHEN X, UDUPA J K, BAGCI U, et al. Medical image segmentation by combining graph cuts and oriented active appearance models[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2035-2046. doi: 10.1109/TIP.2012. 2186306.
    WANG X, YANG J, AI D, et al. Adaptive Mesh Expansion Model (AMEM) for liver segmentation from CT image[J]. PloS One, 2015, 10(3): e0118064. doi: 10.1371/journal.pone. 0118064.
    LIAO M, ZHAO Y, WANG W, et al. Efficient liver segmentation in CT images based on graph cuts and bottleneck detection[J]. Physica Medica, 2016, 32(11): 1383-1396. doi: 10.1155/2016/9093721.
    WU W, ZHOU Z, WU S, et al. Automatic liver segmentation on volumetric CT images using supervoxel-based graph cuts [J]. Computational and Mathematical Methods in Medicine, 2016, 2016: 9093721. doi: 10.1155/2016/9093721.
    PENG J, HU P, LU F, et al. 3D liver segmentation using multiple region appearances and graph cuts[J]. Medical Physics, 2015, 42(12): 6840-6852. doi: 10.1118/1.4934834.
    YANG X, YU H C, CHOI Y, et al. A hybrid semi-automatic method for liver segmentation based on level-set methods using multiple seed points[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1): 69-79. doi: 10.1016/ j.cmpb.2013.08.019.
    PENG J L, WANG Y, and KONG D X. Liver segmentation with constrained convex variational model[J]. Pattern Recognition Letters, 2014, 43(1): 81-88. doi: 10.1016/j.patrec. 2013.07.010.
    EAPEN M, KORAH R, and GEETHA G. Computerized liver segmentation from CT images using probabilistic level set approach[J]. Arabian Journal for Science Engineering, 2016, 41(3): 921-934. doi: 10.1007/s13369-015-1871-y.
    SONG X, CHENG M, WWAG B, et al. Adaptive fast marching method for automatic liver segmentation from CT images[J]. Medical Physics, 2013, 40(9): 091917-28. doi: 10.1118/1.4819824.
    BEICHEL R, BORNIK A, BAUER C, et al. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods[J]. Medical Physics, 2012, 39(3): 1361-1373. doi: 10.1118/ 1.3682171.
    BOYKOV Y Y and JOLLY M P. Interactive graph cuts for optimal boundary region segmentation of objects in ND images[C]. Proceedings of the Eighth International Conference on Computer Vision, Vancouver, British Columbia, Canada, 2001: 105-112. doi: 0-7695-1143-0/01.
    BROX T and MALIK J. Large displacement optical flow: Descriptor matching in variational motion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 500-513. doi: 10.1109/TPAMI.2010. 143.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1283
  • HTML全文瀏覽量:  164
  • PDF下載量:  198
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-10-09
  • 修回日期:  2018-02-06
  • 刊出日期:  2018-04-19

目錄

    /

    返回文章
    返回