基于序列間先驗(yàn)約束和多視角信息融合的肝臟CT圖像分割
doi: 10.11999/JEIT170933 cstr: 32379.14.JEIT170933
基金項(xiàng)目:
國家自然科學(xué)基金(11771160, 11401231),福建省自然科學(xué)基金面上項(xiàng)目(2015J01254),華僑大學(xué)中青年教師科技創(chuàng)新資助計(jì)劃項(xiàng)目(ZQN-PY411)
Liver Segmentation from CT Image Based on Sequential Constraint and Multi-view Information Fusion
Funds:
The National Natural Science Foundation of China (11771160, 11401231), The Natural Science Foundation of Fujian Province (2015J01254), The Research Promotion Program of Huaqiao University (ZQN-PY411)
-
摘要: 醫(yī)學(xué)電子計(jì)算機(jī)斷層掃描(CT)序列圖像中肝臟的準(zhǔn)確分割是實(shí)現(xiàn)計(jì)算機(jī)輔助肝手術(shù)的重要前提,然而圖像中存在的組織病變、邊界模糊或缺失、不同組織間的粘連給肝臟分割帶來極大挑戰(zhàn)。針對這些問題,該文提出一種基于圖像序列間先驗(yàn)約束的半自動分割方法,并進(jìn)一步采取了多視角信息融合的方式實(shí)現(xiàn)肝臟的準(zhǔn)確分割。該方法的優(yōu)勢在于無需大量數(shù)據(jù)的收集和復(fù)雜的先驗(yàn)訓(xùn)練。在Sliver07公開數(shù)據(jù)集合的驗(yàn)證結(jié)果顯示,和領(lǐng)域內(nèi)主要方法相比,該方法具有較高的分割準(zhǔn)確度,特別是當(dāng)肝臟區(qū)域存在病灶、邊界模糊或缺失的情況下具有明顯提升。Abstract: The accurate segmentation of liver in medical Computed Tomography (CT) sequence images is important prerequisite for computer-assisted liver surgery. However, the presence of tissue lesions, the blurred or missing boundary and the adhesion between different organs/tissues poses great challenges to liver segmentation. To address these problems, this paper presents a semi-automatic segmentation method based on the sequential constraints of image sequences, and introduces further a multi-view information fusion method to achieve the accurate segmentation of the liver. One advantage of this approach is that it does not need extensive data collection and complicated prior training. The validation and comparison results on the Sliver07 public data show that the proposed method shows competitive performance, especially when there is liver tumor, blurred or missing liver boundary.
-
Key words:
- CT sequence image /
- Liver segmentation /
- Prior constraint /
- Multi-view information fusion
-
HEIMANN T, MEINZER H, and WOLF I. A statistical deformable model for the segmentation of liver CT volumes [C]. MICCAI Workshop 3-D Segmentation Clinic Grand Challenge, Brisbane, Australia, 2007: 161-166. KAINMULLER D, LANGE T, and LAMECKER H. Shape constrained automatic segmentation of the liver based on a heuristic intensity model[C]. MICCAI Workshop 3-D Segmentation Clinic Grand Challenge, Brisbane, Australia, 2007: 109-116. HEIMANN T and MEINZER H P. Statistical shape models for 3D medical image segmentation: a review[J]. Medical Image Analysis, 2009, 13(4): 543-563. doi: 10.1016/j.media. 2009.05.004. LI G, CHEN X, SHI F, et al. Automatic liver segmentation based on shape constraints and deformable graph cut in CT images[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5315-5329. doi: 10.1109/TIP.2015.2481326. PLATERO C and TOBAR M C. A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans[J]. Computational and Mathematical Methods in Medicine, 2014, 2014: 182909. doi: 10.1155/2014/182909. HU P, WU F, PENG J, et al. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution[J]. Physics in Medicine and Biology, 2016, 61(24): 8676-8698. doi: 10.1088/1361-6560/61/24/8676. LU F, WU F, HU P, et al. Automatic 3D liver location and segmentation via convolutional neural network and graph cut [J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(2): 171-182. doi: 10.1007/s11548-016- 1467-3. ZHENG Y, AI D, MU J, et al. Automatic liver segmentation based on appearance and context information[J]. Biomedical Engineering Online, 2017, 16(1): 16-28. doi: 10.1186/s12938- 016-0296-5. HEIMANN T, GINNEKEN B V, STYNER M A, et al. Comparison and evaluation of methods for liver segmentation from CT datasets[J]. IEEE Transactions on Medical Imaging, 2009, 28(8): 1251-1265. doi: 10.1109/TMI.2009.2013851. ZHENG S, FANF B, LI L, et al. A novel variational method for liver segmentation based on statistical shape model prior and enforced local statistical feature[C]. IEEE International Symposium on Biomedical Imaging, Melbournr, Australia, 2017: 261-264. doi: 10.1109/ISBI.2017.7950515. SHI C, CHENG Y, LIU F, et al. A hierarchical local region- based sparse shape composition for liver segmentation in CT scans[J]. Pattern Recognition, 2016, 50(C): 88-106. doi: 10.1016/j.patcog.2015.09.001. RUSKO L, BEKES G, and FIDRICH M. Automatic segmentation of the liver from multi and single-phase contrast-enhanced CT images[J]. Medical Image Analysis, 2009, 13(6): 871-882. doi: 10.1016/j.media.2009.07.009. AFIFI A and NAKAGUCHI T. Liver segmentation approach using graph cuts and iteratively estimated shape and intensity constrains[C]. Medical Image Computing and Computer-Assisted Intervention, Nice, France, 2012, 7511: 395-403. CHEN X, UDUPA J K, BAGCI U, et al. Medical image segmentation by combining graph cuts and oriented active appearance models[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2035-2046. doi: 10.1109/TIP.2012. 2186306. WANG X, YANG J, AI D, et al. Adaptive Mesh Expansion Model (AMEM) for liver segmentation from CT image[J]. PloS One, 2015, 10(3): e0118064. doi: 10.1371/journal.pone. 0118064. LIAO M, ZHAO Y, WANG W, et al. Efficient liver segmentation in CT images based on graph cuts and bottleneck detection[J]. Physica Medica, 2016, 32(11): 1383-1396. doi: 10.1155/2016/9093721. WU W, ZHOU Z, WU S, et al. Automatic liver segmentation on volumetric CT images using supervoxel-based graph cuts [J]. Computational and Mathematical Methods in Medicine, 2016, 2016: 9093721. doi: 10.1155/2016/9093721. PENG J, HU P, LU F, et al. 3D liver segmentation using multiple region appearances and graph cuts[J]. Medical Physics, 2015, 42(12): 6840-6852. doi: 10.1118/1.4934834. YANG X, YU H C, CHOI Y, et al. A hybrid semi-automatic method for liver segmentation based on level-set methods using multiple seed points[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1): 69-79. doi: 10.1016/ j.cmpb.2013.08.019. PENG J L, WANG Y, and KONG D X. Liver segmentation with constrained convex variational model[J]. Pattern Recognition Letters, 2014, 43(1): 81-88. doi: 10.1016/j.patrec. 2013.07.010. EAPEN M, KORAH R, and GEETHA G. Computerized liver segmentation from CT images using probabilistic level set approach[J]. Arabian Journal for Science Engineering, 2016, 41(3): 921-934. doi: 10.1007/s13369-015-1871-y. SONG X, CHENG M, WWAG B, et al. Adaptive fast marching method for automatic liver segmentation from CT images[J]. Medical Physics, 2013, 40(9): 091917-28. doi: 10.1118/1.4819824. BEICHEL R, BORNIK A, BAUER C, et al. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods[J]. Medical Physics, 2012, 39(3): 1361-1373. doi: 10.1118/ 1.3682171. BOYKOV Y Y and JOLLY M P. Interactive graph cuts for optimal boundary region segmentation of objects in ND images[C]. Proceedings of the Eighth International Conference on Computer Vision, Vancouver, British Columbia, Canada, 2001: 105-112. doi: 0-7695-1143-0/01. BROX T and MALIK J. Large displacement optical flow: Descriptor matching in variational motion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 500-513. doi: 10.1109/TPAMI.2010. 143. -
計(jì)量
- 文章訪問數(shù): 1283
- HTML全文瀏覽量: 164
- PDF下載量: 198
- 被引次數(shù): 0