基于時差多參分選的多層感知器網(wǎng)絡(luò)脈間識別
doi: 10.11999/JEIT170913 cstr: 32379.14.JEIT170913
-
(哈爾濱工程大學(xué)信息與通信工程學(xué)院 哈爾濱 150001)
國家自然科學(xué)基金(61571146),中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(HEUCFP201769),武器裝備預(yù)研基金項(xiàng)目
Recognition of Pulse Repetition Interval of Multilayer Percetron Network Based on Multi-parameter TDOA Sorting
-
CHEN Tao WANG Tianhang GUO Limin
The National Natural Science Foundation of China (61571146), The Fundamental Research Funds for the Central Universities (HEUCFP201769), Weapon Equipment Pre- Research Foundation of China
-
摘要: 現(xiàn)代戰(zhàn)爭中,雷達(dá)系統(tǒng)發(fā)展迅速。為識別復(fù)雜的雷達(dá)信號調(diào)制模式以及混合體制雷達(dá),該文提出一種基于多站獲取脈沖時差參數(shù)聯(lián)合其他脈沖描述字分選的辦法,利用多層感知器神經(jīng)網(wǎng)絡(luò)得到脈間調(diào)制識別結(jié)果。該文通過時差參數(shù)與其他脈沖描述字去交錯解決傳統(tǒng)脈沖重復(fù)周期估計(jì)算法無法對復(fù)雜的脈間調(diào)制方式進(jìn)行估計(jì)。利用訓(xùn)練好的多層感知器,獲取完成去交錯后的脈沖序列其特征向量,獲得其脈間調(diào)制類型識別。通過實(shí)驗(yàn)仿真,在脈沖丟失率不高于20%情況下,對復(fù)雜脈間調(diào)制方式的正確識別概率在90%以上。
-
關(guān)鍵詞:
- 脈間調(diào)制識別 /
- 時差分選 /
- 多層感知器 /
- 信號分選
Abstract: In modern warfare, the radar system is developing rapidly. To recognize complex modulation mode of radar signal and hybrid pulse repetition interval radar, this paper proposes a sorting method based on multi station acquired pulse time-difference parameter combined with other pulse description words, taking advantage of the multi-station TDOA from the same emitter is similar to sort emitter signal pulse, and finally got the recognition result with the Multi-Layer Percetron (MLP) neural network. Traditional Pulse Repetition Interval (PRI) estimation algorithms estimate complex pulse interval modulation invalidly. In this paper, to solve this problem pulse time-difference parameter and other pulse description words are used. The feature vector of de-interlace pulse sequence is acquired and the result of pulse interval modulation type recognition is obtained with the trained MLP neutral network. Through experimental simulation, the correct recognition probability of the complex pulse interval modulation method is more than 90% in the case of the pulse loss rate is not more than 20%. -
張勇強(qiáng), 湯建龍. 基于數(shù)字信道化接收機(jī)的聚類分選算法[J]. 中國電子科學(xué)研究院學(xué)報, 2017, 12(2): 143-148.doi: 10.3969 /j.issn.1673-5692.2016.02.008. ZHANG Yongqiang and TANG Jianlong. Clustering sorting algorithm based on digital channelized receiver[J]. Journal of China Academy of Electronics and Information Technology, 2017, 12(2): 143-148. doi: 10.3969/j.issn.1673-5692.2016.02. 008. ZHANG Shenyong, ZHANG Haili, HU Zebin, et al. Research on clustering-based radar signal sorting[J]. Aerospace Electronic Warfare, 2013, 29(1): 49-52. doi: 10.3969/j.issn. 1673-2421.2013.01.014. YANG Cui and XIAO Changda. Reason analysis and computation of radar pulse losing[J]. Informatization Research, 2010, 36(4): 28-30. doi: 10.3969/j.issn.1647-4888. 2010.04.008. YANG Yumei. Improved K-means dynamic clustering algorithm based on information entropy[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2016, 28(2): 254-259. doi: 10.3979/ j.issn.1673-825X.2016.02.018. WANG Fei, WANG Guoyin, LI Zhixing, et al. Clustering by fast search and find of density peaks based on grid[J]. Journal of Chinese Computer Systems, 2017, 38(5): 1034-1038. doi: 10.3969/j.issn.1000-1220.2017.05.024. CHEN Tao, WANG Tianhang, and GUO Limin. Sequence searching methods of radar signal pulses based on PRI transform algorithm[J]. Systems Engineering and Electronics, 2017, 39(6): 1261-1267. doi: 10.3969/j.issn.1001-506X.2017. 06.12. LÜ Xinzheng, LIU Hezhou, and WANG Qizhi. A new technology of pulse sorting based on paired localization[J]. Aerospace Electronic Warfare, 2017, 33(3): 47-49. doi: 10.16328/j.htdz8511.2017.03.013. YANG Lin, SUN Zhongkang, ZHOU Yiyu, et al. Pulse pairing of dense signals by signal cross correlation[J]. Acta Electronica Sinica, 1999, 27(3): 52-55. doi: 10.3321/j.issn: 0372-2112.1999.03.015 ZHENG Huiwen and HUANG Jianchong. Radar signal sorting based on time difference accumulation[J]. Electronic Information Warfare Technology, 2017, 32(1): 1-7. doi: 10.3936/j.issn.1674-2230.2017.01.001. MA Shuang, WU Haibin, LIU Zheng, et al. Method for emitter TDOA sorting based on recursive extended histogram [J]. Journal of National University of Defense Technology, 2012, 34(5): 83-89. doi: 10.3969/j.issn.1001-2486.2012.05.017. MA Xiantong, LUO Jingqing, and MENG Xianghao. Signal sorting and positioning method for similar radiation sources based on time difference of arrival[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2363-2368. doi: 10.11999/JEIT141480. MA Xiantong, LUO Jingqing, and WU Shilong. Joint sorting and location method using TDOA and multi-parameter of multi-station[J]. Journal of National University of Defense Technology, 2015, 37(6): 78-83. doi: 10.11887/j.cn.201506016. YANG Lili and SUN Xiaowen. Precision analysis of airborne passive location of multi-stations[J]. Journal of China Academy of Electronics and Information Technology, 2014, 9(4): 348-352. doi: 10.3969/j.issn.1673-5692.2014.04.005. [14] KAUPPI J P and MARTIKAINEN K. An efficient set of features for pulse repetition interval modulation recognition [C]. IET International Conference on Radar System, Edinburgh, UK, UK, 2007: 1-5. doi: 10.1049/CP:20070548. [15] KAUPPI J P, MARTIKAINEN K, and RUOTSALAINEN U. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns[J]. Neural Networks the Official Journal of the International Neural Network Society, 2010, 23(10): 1226-1237. doi: 10.1016/j.neunet.2010. 06.008. NIE Xiaowei. Radar signal pre-sorting based on K-means algorithm[J]. Electronic Science and Technology, 2013, 26(11): 55-58. doi: 10.3969/j.issn.1007-7820.2013.11.015. -
計(jì)量
- 文章訪問數(shù): 1456
- HTML全文瀏覽量: 186
- PDF下載量: 65
- 被引次數(shù): 0