一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于稀疏貝葉斯學(xué)習(xí)的碼元速率估計(jì)

金艷 田田 姬紅兵

金艷, 田田, 姬紅兵. 基于稀疏貝葉斯學(xué)習(xí)的碼元速率估計(jì)[J]. 電子與信息學(xué)報(bào), 2018, 40(7): 1598-1603. doi: 10.11999/JEIT170906
引用本文: 金艷, 田田, 姬紅兵. 基于稀疏貝葉斯學(xué)習(xí)的碼元速率估計(jì)[J]. 電子與信息學(xué)報(bào), 2018, 40(7): 1598-1603. doi: 10.11999/JEIT170906
JIN Yan, TIAN Tian, JI Hongbing. Symbol Rate Estimation Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1598-1603. doi: 10.11999/JEIT170906
Citation: JIN Yan, TIAN Tian, JI Hongbing. Symbol Rate Estimation Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1598-1603. doi: 10.11999/JEIT170906

基于稀疏貝葉斯學(xué)習(xí)的碼元速率估計(jì)

doi: 10.11999/JEIT170906 cstr: 32379.14.JEIT170906
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61201286),陜西省自然科學(xué)基金(2014JMS304)

詳細(xì)信息
    作者簡(jiǎn)介:

    金艷:金 艷: 女,1978年生,博士,副教授,碩士生導(dǎo)師,研究方向?yàn)楝F(xiàn)代信號(hào)處理、統(tǒng)計(jì)信號(hào)處理、信號(hào)參數(shù)估計(jì)、通信信號(hào)偵測(cè)等. 田 田: 女,1993年生,碩士生,研究方向?yàn)樾盘?hào)參數(shù)估計(jì)、脈沖噪聲處理. 姬紅兵: 男,1963年生,博士,教授,博士生導(dǎo)師,主要研究方向?yàn)楣怆娦畔⑻幚?、微弱信?hào)檢測(cè)與識(shí)別、醫(yī)學(xué)影像處理等.

  • 中圖分類號(hào): TN911.72

Symbol Rate Estimation Based on Sparse Bayesian Learning

Funds: 

The National Natural Science Foundation of China (61201286), The Natural Science Foundation of Shannxi Province (2014JMS304)

  • 摘要: 現(xiàn)有的相位編碼信號(hào)碼元速率估計(jì)方法在樣本點(diǎn)足夠多的情況下才能準(zhǔn)確估計(jì)出參數(shù),且算法復(fù)雜度高。針對(duì)此問(wèn)題,該文詳細(xì)分析了BPSK信號(hào)的結(jié)構(gòu)特征,并以此為先驗(yàn)信息對(duì)其循環(huán)自相關(guān)(CA)向量進(jìn)行壓縮采樣,降低了傳統(tǒng)貝葉斯復(fù)數(shù)處理方法的維度。利用壓縮傳感中離散傅里葉變換矩陣的奇偶性,分解傳感矩陣為正弦和余弦變換,分別將CA向量的實(shí)虛部轉(zhuǎn)換到對(duì)應(yīng)變換域測(cè)量,根據(jù)復(fù)數(shù)信號(hào)實(shí)虛部具有相同支撐集這一特點(diǎn),采用多任務(wù)稀疏貝葉斯重構(gòu)時(shí)延積向量的單邊譜分量,從而估計(jì)出碼元頻率。理論分析和仿真結(jié)果表明,相較于其它基于稀疏貝葉斯學(xué)習(xí)的參數(shù)估計(jì)算法,所提方法在測(cè)量數(shù)量較少的情況下也能準(zhǔn)確估計(jì)出循環(huán)頻率,且算法實(shí)時(shí)性顯著提高。
  • [2] YILDIRIM A. Method for estimating the central frequency of phase-coded radar signals[J]. IET Signal Processing, 2017, 10(9): 1073-1081. doi: 10.1049/iet-spr.2016.0237.
    JIN Yan, and JI Hongbing. Robust symbol rate estimation of PSK signals under the cyclostationary framework[J]. Circuits, Systems, and Signal Processing, 2014, 33(2): 599-612. doi: 10.1007/s00034-013-9639-7.
    [3] GARDNER W. Exploitation of spectral redundancy in cyclostationary signals[J]. IEEE Signal Processing Magazine, 1991, 8(2): 14-36. doi: 10.1109/79.81007.
    [4] DIKMESE S, ILYAS Z, SOFOTASIOS P C, et al. Sparse frequency domain spectrum sensing and sharing based on cyclic prefix autocorrelation[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(1): 159-172. doi: 10.1109 /JSAC.2016.2633058.
    [5] KHALAF Z and PALICOT J. New Blind Free-Band Detectors Exploiting Cyclic Autocorrelation Function Sparsity[M]. Switzerland: Springer International Publishing, 2014: 91-117.
    [6] BOLLIG A and MATHAR R. Dictionary-based reconstruction of the cyclic autocorrelation via l1-minimization for cyclostationary spectrum sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 4908-4912. doi: 10.1109/ICASSP.2013.6638594.
    [7] CHEN Xushan, ZHANG Xiongwei, YANG Jibin, et al. Gridless sparse reconstruction for the cyclic autocorrelation estimation[C]. IEEE International Conference on Advanced Communication Technology, Pyeongchang, South Korea, 2016: 254-259. doi: 10.1109/ICACT.2016. 7423349.
    LIU Fang, WU Jiao, YANG Shuyuan, et al. Research advances on structured compressive sensing[J]. Acta Automatica Sinica, 2013, 39(12): 1980-1995. doi: 10.3724/ SP.J.1004.2013.01980.
    [9] TIPPING M E. Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244. doi: 10.1162/15324430152748236.
    [10] HUANG X, ZHAO Q, JIANG W, et al. Frequency estimation of cyclic spectrum carrier based on compressive sampling of BPSK signal[C]. IET International, Radar Conference, Hangzhou, China, 2015: 1-4. doi: 10.1049/cp.2015.1373.
    [11] KHALAF Z, NAFKHA A, and PALICOT J. Blind spectrum detector for cognitive radio using compressed sensing and symmetry property of the second order cyclic autocorrelation [C]. IEEE International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications, Stockholm, Sweden, 2012: 291-296. doi: 10.4108/icst. crowncom.2012.248133.
    [12] WU Qisong, ZHANG Yimin D, AMIN M G, et al. Complex multitask Bayesian compressive sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 3375-3379. doi: 10.1109/ ICASSP.2014.6854226.
    WANG Wei, TANG Weimin, WANG Ben, et al. Sparse signal recovery based on complex bayesian compressive sensing[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1419-1423. doi: 10.11999/JEIT151056.
    ZHAO Shujie and ZHAO Jianxun. Signal Detection and Estimation Theory[M]. Beijing: Publishing House of Electronics Industry, 2013: 129-139.
    [15] JI Shihao, DUNSON D, and CARIN L. Multitask compressive sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 92-106. doi: 10.1109/TSP.2008. 2005866.
    [16] GIRI R and RAO B. Type I and Type II Bayesian methods for sparse signal recovery using scale mixtures[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3418-3428. doi: 10.1109/TSP.2016.2546231.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1427
  • HTML全文瀏覽量:  299
  • PDF下載量:  210
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-09-26
  • 修回日期:  2018-03-14
  • 刊出日期:  2018-07-19

目錄

    /

    返回文章
    返回