Ad-hoc移動云環(huán)境下采取隨機規(guī)劃和買賣博弈的任務(wù)卸載方法
doi: 10.11999/JEIT170895 cstr: 32379.14.JEIT170895
-
(重慶郵電大學(xué)移動通信技術(shù)重慶市重點實驗室 重慶 400065)
國家自然科學(xué)基金(61701059),重慶市教委科學(xué)技術(shù)研究項目(KJ1500406, KJ1500408),重慶郵電大學(xué)博士啟動基金(A2014-92),重慶市研究生科研創(chuàng)新項目(CYS17218)
Stochastic Programming and Buyer-seller Game Methods for Workload Distribution in an Ad-hoc Mobile Cloud
-
ZHANG Long CAO Bin
The National Natural Science Foundation of China (61701059), The Science and Technology Research Project of Chongqing Municipal Education Commission of China (KJ1500406, KJ1500408), The Doctoral Fund of Chongqing University of Posts and Telecommunications (A2014-92), The Research and Innovation Project of Graduated Students in Chongqing (CYS17218)
-
摘要:
由于移動設(shè)備處理能力和能量的限制,近年來提出了一種新型移動云環(huán)境,通過Ad-hoc方式共享鄰近設(shè)備的閑置資源完成數(shù)據(jù)處理、存儲等需求。在此背景下,該文提出一個在源設(shè)備與鄰近設(shè)備之間的任務(wù)卸載方案??紤]無線網(wǎng)絡(luò)環(huán)境下移動設(shè)備的移動性導(dǎo)致連接時間隨機性問題,采用隨機規(guī)劃方法補償連接時間預(yù)測不精確對任務(wù)卸載帶來的不利影響。同時,為了激勵移動設(shè)備相互協(xié)作、最大化各自收益,提出基于買賣博弈的分布式多階段隨機買賣博弈任務(wù)卸載(SGWD)算法。仿真結(jié)果表明該算法在通信成本,時間延遲,能量消耗和收益性能上取得了有效提升。
Abstract:In order to solve the limitation of processing capacity and energy of single mobile equipment, the conception of Ad-hoc mobile cloud is proposed recently, in which a mobile device can use the idle resources at other neighboring devices for processing data and storage in Ad-hoc manner. To this end, this paper designs a workload distribution for offloading among mobile equipment. Considering the random and intermittent connections between mobile equipment caused by the movement in wireless network, a stochastic programming method is adopted to take posterior recourse actions to compensate for inaccurate predictions. Moreover, in order to motivate the available mobile equipment for offloading while maximizing their utilities, a distributed multi-stage Stochastic buyer/seller Game for Workload Distribution (SGWD) is formulated. Numerical results show the effectiveness of SGWD compared with the benchmark method in terms of communication cost, the delay, energy consumption and the payoff.
-
[2] MACH P and BECVAR Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656. doi: 10.1109/COMST.2017.2682318. ROST P, BERNARDOS C, and DOMENICO A. Cloud technologies for flexible 5G radio access networks[J]. IEEE Communications Magazine, 2014, 52(5): 68-76. doi: 10.1109/ MCOM.2014.6898939. [3] BHARDWAJ S, JAIN L, and JAIN S. Cloud computing: A study of infrastructure as a service (IAAS)[J]. International Journal of Information Technology & Web Engineering, 2010, 2(1): 60-63. [4] JARARWEH Y, TAWALBEH L, ABABNEH F, et al. Resource efficient mobile computing using cloudlet infrastructure[C]. IEEE Ninth International Conference on Mobile Ad-hoc and Sensor Networks (MSN), Dalian, 2013: 373-377. doi: 10.1109/MSN.2013.75. [5] CHEN W, LEA C T, and LI K. Dynamic resource allocation in Ad-hoc mobile cloud computing[C]. IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1-6. doi: 10.1109/WCNC.2017. 7925613. [6] SHILA D M, SHEN W, CHENG Y, et al. AMCloud: Toward a secure autonomic mobile Ad hoc cloud computing system[J]. IEEE Wireless Communications, 2017, 24(2): 74-81. doi: 10.1109/MWC.2016.1500119RP. [7] ZAGHDOUDI B, AYED H K B, and GNICHI I. A protocol for setting up Ad hoc mobile clouds over spontaneous MANETs: A proof of concept[C]. Cloudification of the Internet of Things (CIoT), Paris, France, 2016: 1-6. doi: 10.1109/CIOT.2016.7872919. [8] KHAN R and KHAN S U. Design and implementation of Ad-hoc collaborative proxying scheme for reducing network energy waste[J]. Digital Communications and Networks, 2017, 3(2): 118-128. doi: 10.1016/j.dcan.2016.11.001. [9] DUAN Q. Modeling and performance analysis for composite networkCompute service provisioning in software-defined cloud environments[J]. Digital Communications and Networks, 2015, 1(3): 181-190. doi: 10.1016/j.dcan.2015.05. 003. [10] TRUONG-HUU T, THAM C K, and NIYATO D. To offload or to wait: An opportunistic offloading algorithm for parallel tasks in a mobile cloud[C]. IEEE CloudCom, Singapore, 2014: 182-189. doi: 10.1109/CloudCom.2014.33. [11] FERNANDO N, LOKE S W, and RAHAYA W. Dynamic mobile cloud computing: Ad hoc and opportunistic job sharing[C]. IEEE International Conference on Utility and Cloud Computing (UCC), Victoria, NSW, 2011: 281-286. doi: 10.1109/UCC.2011.45. [12] TRUONG-HUU T, THAM C K, and NIYATO D. A stochastic workload distribution approach for an Ad-hoc mobile cloud[C]. IEEE CloudCom 2014, Singapore, 2014: 174-181. doi: 10.1109/CloudCom.2014.32. [13] GRAND M and BOYD S. CVX: Matlab software for disciplined convex programming[EB/OL]. version 1.21. Global Optimization, 2008: 155-210. -
計量
- 文章訪問數(shù): 752
- HTML全文瀏覽量: 132
- PDF下載量: 61
- 被引次數(shù): 0