頻譜擁擠環(huán)境中峰均功率比約束的認(rèn)知雷達(dá)發(fā)射波形設(shè)計
doi: 10.11999/JEIT170834 cstr: 32379.14.JEIT170834
-
(空軍工程大學(xué)信息與導(dǎo)航學(xué)院 西安 710077)
基金項目:
國家自然科學(xué)基金(61571456),陜西省自然科學(xué)基金(2016JM0644)
Cognitive Radar Waveform Design with A Peak to Average Power Ration Constraint for Spectrally Dense Environments
-
ZOU Kun LUO Yanbo LI Wei LI Hailin
Funds:
The National Natural Science Foundation of China (61571456), The Natural Science Foundation of Shaanxi Province (2016JM0644)
-
摘要: 復(fù)雜電磁環(huán)境的一個重要特征是頻譜資源受限,合理使用有限的頻譜資源是認(rèn)知雷達(dá)發(fā)射波形設(shè)計必須考慮的問題。以峰值與平均功率比(PAR)為約束條件,設(shè)計認(rèn)知雷達(dá)發(fā)射波形,最大化接收數(shù)據(jù)信噪比(SNR),最小化波形頻譜在受干擾頻段內(nèi)功率。該問題是二次約束的多目標(biāo)優(yōu)化問題,采用Pareto優(yōu)化方法,將兩個目標(biāo)函數(shù)通過加權(quán)構(gòu)成一個目標(biāo)函數(shù),從而構(gòu)成一個二次約束二次規(guī)劃非凸優(yōu)化問題。進(jìn)一步采用半定規(guī)劃松弛和隨機化方法,可以獲得最優(yōu)發(fā)射波形,其性能與Pareto加權(quán)系數(shù)和PAR約束條件等有關(guān)。計算機仿真分析表明,發(fā)射波形設(shè)計在SNR和干擾抑制能力方面存在制約關(guān)系,并可以通過增大發(fā)射機動態(tài)范圍進(jìn)一步改善性能。
-
關(guān)鍵詞:
- 認(rèn)知雷達(dá) /
- 波形設(shè)計 /
- 頻譜擁擠環(huán)境 /
- Pareto優(yōu)化 /
- 峰均功率比約束
Abstract: The most important characteristic of the complex electromagnetic environment is the limitation of the radio frequency resource. As a result, the smart use of the limiting spectral resource is necessary to the waveform design for the cognitive radar. This paper designs the transmit waveform under the Peak to Average power Ratio (PAR), to maximize the Signal to Noise power Ratio (SNR) at the receiver, and simultaneously, minimize the power of the waveform in the interference frequency bands. The waveform design problem is a quadratically constrained multi-objective optimization problem. Exploiting the Pareto optimization method, the one objective function is obtained by weighted sum of the two ones, and the resultant problem reduces into a Quadratically Constrained Quadratic Program (QCQP). In order to solve it, the SemiDefinite Program (SDP) relaxation and randomization are used to achieve the optimal waveform, whose performance is related to the Pareto weights and the PAR constraint. The computer simulation results show that, there is a restrictive relationship between the SNR and interference suppression ability for the waveform design, and the performance can be improved by increasing the dynamic range of the transmitter. -
[2] TAYLOR J D. Ultra-wideband Radar Technology[M]. Florida: CRC Press LLC, 2001, Chapter 12. GRIFFITHS H, WATTS S, and WICKS M. Radar spectrum engineering and management: Technical and regulatory issues[J]. Proceedings of the IEEE, 2015, 103(1): 85-102. doi: 10.1109/JPROC.2014.2365517. [3] LINDENFELD M J. Sparse frequency transmit and receive waveform design[J]. IEEE Transactions on Aerospace and Electronic System, 2004, 40(3): 851-861. doi: 10.1109/TAES. 2004.1337459. [4] STINCO P, GRECO M S, and GINI F. Spectrum sensing and sharing for cognitive radars[J]. IET Radar, Sonar and Navigation, 2016, 10(3): 595-602. doi: 10.1049/iet-rsn.2015. 0372. [5] STINCO P, GRECO M, and GINI F. Cognitive radars in spectrally dense environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 20-27. doi: 10.1109/MAES.2016.150193. [6] BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2-40. doi: 10.1109/MAES.2016. 160071. [7] AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic System, 2014, 50(2): 1138-1152. doi: 10.1109/ TAES.2014.120731. [8] AI W, HUANG Y, and ZHANG S. New results on Hermitian matrix rank-one decomposition[J]. Mathematical Programming, Series A, 2011, 128(1/2): 253-283. doi: 10.1007 /s10107-009-0304-7. [9] AUBRY A, DE MAIO A, HUANG Y, et al. A new radar waveform design algorithm with improved feasibility for spectral coexistence[J]. IEEE Transactions on Aerospace and Electronic System, 2015, 50(2): 1029-1038. doi: 10.1109/ TAES.2014.140093. [10] AUBRY A, CAROTENUTO V, and DE MAIO A. Forcing multiple spectral compatibility constraints in radar waveforms[J]. IEEE Signal Processing, 2016, 23(4): 483-487. doi: 10.1109/LSP.2016.2532739. [11] LUO Zhiquan, MA WingKin, SO A M, et al. Semidefinite relaxation of quadratic optimization problems, from its practical deployments and scope of applicability to key theoretical results[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20-34. doi: 10.1109/MSP.2010.936019. [12] GE Peng, CUI Guolong, KARBASI S M, et al. Cognitive radar sequence design under the spectral compatibility requirements[J]. IET Radar, Sonar and Navigation, 2017, 11(5): 759-767. doi: 10.1049/iet-rsn.2016.0239. [13] AUBRY A, CAROTENUTO V, DE MAIO A, et al. Optimization theory-based radar waveform design for spectrally dense environments[J]. IEEE Aerospace and Electron System Magazine, 2016, 31(12): 14-25. doi: 10.1109 /MAES.2016.150216. [14] DE MAIO A, PIEZZO M, FARINA A, et al. Pareto-optimal radar waveform design[J]. IET Radar, Sonar and Navigation, 2011, 5(4): 473-482. doi: 10.1049/iet-rsn.2010.0184. [15] DE MAIO A, HUANG Y, PIEZZO M, et al. Design of optimized radar codes with a peak to average power ratio constraint[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2683-2697. doi: 10.1109/TSP.2011.2128313. [16] YU Xianxiang, CUI Guolong, GE Peng, et al. Constrained radar waveform design algorithm for spectral coexistence[J]. Electronics Letters, 2017, 53(8): 558-560. doi: 10.1049/el. 2016.4524. -
計量
- 文章訪問數(shù): 1248
- HTML全文瀏覽量: 156
- PDF下載量: 309
- 被引次數(shù): 0