一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于新型三元卷積神經(jīng)網(wǎng)絡(luò)的行人再辨識(shí)算法

朱建清 曾煥強(qiáng) 杜永兆 雷震 鄭力新 蔡燦輝

朱建清, 曾煥強(qiáng), 杜永兆, 雷震, 鄭力新, 蔡燦輝. 基于新型三元卷積神經(jīng)網(wǎng)絡(luò)的行人再辨識(shí)算法[J]. 電子與信息學(xué)報(bào), 2018, 40(4): 1012-1016. doi: 10.11999/JEIT170803
引用本文: 朱建清, 曾煥強(qiáng), 杜永兆, 雷震, 鄭力新, 蔡燦輝. 基于新型三元卷積神經(jīng)網(wǎng)絡(luò)的行人再辨識(shí)算法[J]. 電子與信息學(xué)報(bào), 2018, 40(4): 1012-1016. doi: 10.11999/JEIT170803
ZHU Jianqing, ZENG Huanqiang, DU Yongzhao, LEI Zhen, ZHENG Lixin, CAI Canhui. Person Re-identification Based on Novel Triplet Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2018, 40(4): 1012-1016. doi: 10.11999/JEIT170803
Citation: ZHU Jianqing, ZENG Huanqiang, DU Yongzhao, LEI Zhen, ZHENG Lixin, CAI Canhui. Person Re-identification Based on Novel Triplet Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2018, 40(4): 1012-1016. doi: 10.11999/JEIT170803

基于新型三元卷積神經(jīng)網(wǎng)絡(luò)的行人再辨識(shí)算法

doi: 10.11999/JEIT170803 cstr: 32379.14.JEIT170803
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61602191, 61401167, 61473291, 61605048, 61372107),福建省自然科學(xué)基金(2016J01308),廈門市科技計(jì)劃項(xiàng)目(3502Z20173045),華僑大學(xué)中青年教師科技創(chuàng)新資助計(jì)劃(ZQN-PY418, ZQN-YX403, ZQN-PY518),華僑大學(xué)科研基金資助項(xiàng)目(16BS108)

Person Re-identification Based on Novel Triplet Convolutional Neural Network

Funds: 

The National Natural Science Foundation of China (61602191, 61401167, 61473291, 61605048, 61372107), The Natural Science Foundation of Fujian Province (2016J01308), The Scientific and Technology Funds of Xiamen (3502Z20173045), The Promotion Program for Young and Middle Aged Teacher in Science and Technology Research of Huaqiao University (ZQN-PY418, ZQN-YX403, ZQN-PY518), The Scientific Research Funds of Huaqiao University (16BS108)

  • 摘要: 基于三元卷積神經(jīng)網(wǎng)絡(luò)的行人再辨識(shí)算法多數(shù)采用歐式距離度量行人之間的相似度,并配合鉸鏈(hinge)損失函數(shù)進(jìn)行卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練。然而,這種作法存在兩個(gè)不足:歐式距離作為行人相似度,鑒別力不夠強(qiáng);鉸鏈損失函數(shù)的間隔(Margin)參數(shù)設(shè)定依賴于人工預(yù)先設(shè)定且在訓(xùn)練過程中無法自適應(yīng)調(diào)整。為此,針對(duì)上述兩個(gè)不足進(jìn)行改進(jìn),該文提出一種基于新型三元卷積神經(jīng)網(wǎng)絡(luò)的行人再辨識(shí)算法,以提高行人再辨識(shí)的準(zhǔn)確率。首先,提出一種歸一化混合度量函數(shù)取代傳統(tǒng)的度量方法進(jìn)行行人相似度計(jì)算,提高了行人相似度度量的鑒別力;其次,提出采用Log-logistic函數(shù)代替鉸鏈函數(shù),無需人工設(shè)定間隔參數(shù),改進(jìn)了特征與度量函數(shù)的聯(lián)合優(yōu)化效果。實(shí)驗(yàn)結(jié)果表明,所提出的算法在Auto Detected CUHK03 和VIPeR兩個(gè)數(shù)據(jù)庫上的準(zhǔn)確率均獲得顯著的提升,驗(yàn)證了所提出算法的優(yōu)越性。
  • GRAY Douglas and TAO Hai. Viewpoint invariant pedestrian recognition with an ensemble of localized features [C]. European Conference on Computer Vision, Marseille- France in Palais des Congrs Parc Chanot, 2008: 262-275.
    FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2360-2367.
    LIAO Shengcai and LI Stan Z. Efficient PSD constrained asymmetric metric learning for person re-identification[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3685-3693.
    MATSUKAWA Tetsu, OKABE Takahiro, SUZUKI Einoshin, et al. Hierarchical gaussian descriptor for person re- identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1363-1372.
    CHEN Dapeng, YUAN Zejian, CHEN Badong, et al. Similarity learning with spatial constraints for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1268-1277.
    YANG Xun, WANG Meng, HONG Richang, et al. Enhancing person re-identification in a self-trained subspace[OL]. https://arxiv.org/pdf/1704.06020, 2017.
    YANG Yang, WEN Longyin, LYU Siwei, et al. Unsupervised learning of multi-level descriptors for person re-identification [C]. AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 2017: 4306-4312.
    WU Shangxuan, CHEN Ying Cong, LI Xiang, et al. An enhanced deep feature representation for person re-identification[C]. IEEE Winter Conference on Applications of Computer Vision, Lake Placid, NewYork, USA, 2016: 1-8.
    XIAO Tong, LI Hongsheng, OUYANG Wanli, et al. Learning deep feature representations with domain guided dropout for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1249-1258.
    LI Wei, ZHAO Rui, XIAO Tong, et al. Deepreid: Deep filter pairing neural network for person re-identification [C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2014: 152-159.
    YI Dong, LEI Zhen, LIAO Shengcai, et al. Deep metric learning for person re-identification[C]. International Conference on Pattern Recognition, Stockholm, Sweden, 2014: 34-39.
    VARIOR Rahul Rama, HALOI Mrinal, and WANG Gang. Gated siamese convolutional neural network architecture for human re-identification[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 791-808.
    WU Lin, WANG Yang, LI Xue, et al. What-and-where to match: deep spatially multiplicative integration networks for person re-identification[OL]. https://arxiv.org/pdf/1707. 07074, 2017.
    ZHU Jianqing, ZENG Huanqiang, LIAO Shengcai, et al. Deep hybrid similarity learning for person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, (99): 1. doi: 10.1109/TCSVT.2017. 2734740.
    CHEN S Z, GUO C C, and LAI J. Deep ranking for person re-identification via joint representation learning[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2353-2367. doi: 10.1109/TIP.2016.2545929.
    ZHAO Liming, LI Xi, WANG Jingdong, et al. Deeply- learned part-aligned representations for person re- identification[OL]. https://arxiv.org/pdf/1707.07256, 2017.
    LIU H, FENG J, QI M, et al. End-to-end comparative attention networks for person re-identification[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3492-3506.
    IOFFE Sergey and SZEGEDY Christian. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning, Lille, France, 2015: 448-456.
    KRIZHEVSKY Alex, SUTSKEVER Ilya, and HINTON Geoffrey E. ImageNet classification with deep convolutional neural networks[C]. International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012: 1097-1105.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1703
  • HTML全文瀏覽量:  176
  • PDF下載量:  241
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-08-08
  • 修回日期:  2018-01-10
  • 刊出日期:  2018-04-19

目錄

    /

    返回文章
    返回