基于信號(hào)-數(shù)據(jù)聯(lián)合處理的壓制-距離欺騙復(fù)合干擾抑制算法
doi: 10.11999/JEIT170759 cstr: 32379.14.JEIT170759
-
海軍航空大學(xué)信息融合研究所 ??煙臺(tái) ??264001
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61731023, 61701519, 61501489);泰山學(xué)者攀登計(jì)劃
A Suppression Algorithm of Blanket-distance Deception Compound Jamming based on Joint Signal-data Processing
-
Institute of Information Fusion, Naval Aeronautics University, Yantai 264001, China
Funds: The National Natural Science Foundation of China (61731023, 61701519, 61501489), Taishan Scholar Climbing Plan
-
摘要: 針對(duì)單一信號(hào)處理或數(shù)據(jù)處理對(duì)壓制-欺騙加性復(fù)合干擾抑制效果較差的問題,論文提出一種適用于脈沖壓縮雷達(dá)的基于信號(hào)-數(shù)據(jù)聯(lián)合處理的壓制-距離欺騙復(fù)合干擾抑制算法。首先,通過分?jǐn)?shù)階傅里葉變換(FRFT)域窄帶濾波以及LFM信號(hào)重構(gòu)對(duì)消算法,實(shí)現(xiàn)信號(hào)層對(duì)壓制干擾的抑制,并減小對(duì)真實(shí)目標(biāo)的漏檢概率;然后,利用噪聲點(diǎn)跡空間相關(guān)性較差的特征,通過M/N邏輯法對(duì)噪聲點(diǎn)跡進(jìn)行剔除,并對(duì)目標(biāo)點(diǎn)跡進(jìn)行航跡起始;最后,根據(jù)距離假目標(biāo)航跡角度量測(cè)誤差方差較大的特點(diǎn),通過
${\chi ^2}$ 檢驗(yàn)以及聚類劃分算法,對(duì)虛假目標(biāo)航跡進(jìn)行剔除,最終實(shí)現(xiàn)對(duì)壓制-欺騙加性復(fù)合干擾的抑制。仿真結(jié)果表明,該文算法對(duì)壓制-欺騙復(fù)合干擾能夠起到較好的抑制效果。-
關(guān)鍵詞:
- 信號(hào)-數(shù)據(jù)聯(lián)合處理 /
- 壓制-距離欺騙復(fù)合干擾 /
- 分步抑制 /
- 分?jǐn)?shù)階傅里葉變換
Abstract: Considering at the problem that the suppression effect of single signal processing or data processing is poor on blanket-deception compound jamming, a suppression algorithm of blanket-distance deception compound jamming based on joint signal-data processing is proposed. Firstly, the Fractional Fourier Transform (FRFT) domain narrowband filtering and LFM signal reconstruction algorithm are used to suppress the suppression of the signal layer and reduce the leakage probability of the real target. Then, the target tracks and the deception tracks are rejected by using the M/N logic method. Finally, according to the different characteristics of the angle variance between the false targets and the true targets, the false targets are eliminated by the${\chi ^2}$ test and the clustering algorithm. The simulation results verify the good effect of the algorithm proposed in this paper. -
表 1 目標(biāo)檢測(cè)概率和虛警概率隨門限取值變化
門限取值 1 2 3 4 5 6 檢測(cè)概率 1.00 1.00 1.00 0.99 0.88 0.79 虛警概率 0.45 0.23 0.11 0.03 0 0 下載: 導(dǎo)出CSV
-
ROJA R B and UTTARAKUMARI M. Optimization of orthogonal adaptive waveform design in presence of compound Gaussian clutter for MIMO radar[J]. Springerplus, 2015, 4(1): 1–12 doi: 10.1186/s40064-015-1501-x 廖勝男, 韋杉, 文樹梁, 等. 基于相位擾動(dòng)的抗有源加性復(fù)合干擾技術(shù)[J]. 航天電子對(duì)抗, 2012, 28(1): 24–26 doi: 10.3969/j.issn.1673-2421.2012.01.009LIAO Shengnan, WEI Shan, WEN Shuliang, et al. An algorithm for restraining active additive compound jamming based on phase-perturbed[J]. Aerospace Electronic Warfare, 2012, 28(1): 24–26 doi: 10.3969/j.issn.1673-2421.2012.01.009 任鵬沖, 葉廣強(qiáng), 劉華偉. 一種有源加性復(fù)合干擾的對(duì)抗算法研究[J]. 計(jì)算機(jī)量測(cè)與控制, 2016, 24(1): 84–88 doi: 10.16526/j.cnki.11-4762/tp.2016.01.079REN Pengchong, YE Guangqiang, and LIU Huawei. An algorithm research for restraining active additive compound jamming[J]. Computer Measurement&Control, 2016, 24(1): 84–88 doi: 10.16526/j.cnki.11-4762/tp.2016.01.079 賀照輝, 秦江敏, 馬曉巖. 基于PR的雷達(dá)抗復(fù)合干擾中神經(jīng)網(wǎng)絡(luò)特征提取[J]. 空軍預(yù)警學(xué)院學(xué)報(bào), 2004, 18(3): 12–15 doi: 10.3969/j.issn.1673-8691.2004.03.005HE Zhaohui, QIN Jiangmin, and MA Xiaoyan. NN feature extraction with PR radar anti-complex-jamming[J]. Journal of Air Force Radar Academy, 2004, 18(3): 12–15 doi: 10.3969/j.issn.1673-8691.2004.03.005 孫殿星, 王國(guó)宏, 賀達(dá)超, 等. 雷達(dá)組網(wǎng)抗距離-速度欺騙復(fù)合干擾技術(shù)研究[J]. 現(xiàn)代防御技術(shù), 2016, 44(3): 84–91 doi: 10.3969/j.issn.1009-086x.2016.03.014SUN Dianxing, WANG Guohong, HE Dachao, et al. Antijamming technique in the presence of range-velocity deception compound jamming based on radar network[J]. Modern Defense Technology, 2016, 44(3): 84–91 doi: 10.3969/j.issn.1009-086x.2016.03.014 戶鋒剛, 阮懷林. 脈沖多普勒雷達(dá)特征分析及干擾識(shí)別方法研究[J]. 艦船電子對(duì)抗, 2007, 30(3): 30–36 doi: 10.3969/j.issn.1673-9167.2007.03.008HU Fenggang and RUAN Huailin. Characteristic analysis of pulse Doppler radar and the study of jamming recognition method[J]. Shipboard Electronic Countermeasure, 2007, 30(3): 30–36 doi: 10.3969/j.issn.1673-9167.2007.03.008 龔詢, 徐海全, 王國(guó)宏, 等. SOJ與RGPO復(fù)合干擾下目標(biāo)跟蹤技術(shù)[J]. 火力與指揮控制, 2014, 39(8): 22–25 doi: 10.3969/j.issn.1002-0640.2014.08.006GONG Xun, XU Haiquan, WANG Guohong, et al. Target tracking technique under SOJ and RGPO compound jamming[J]. Fire Control&Command Control, 2014, 39(8): 22–25 doi: 10.3969/j.issn.1002-0640.2014.08.006 田原. 雷達(dá)有源復(fù)合干擾抑制算法研究與實(shí)驗(yàn)數(shù)據(jù)分析[D]. [碩士論文], 電子科技大學(xué), 2013. 陶然, 鄧兵, 王越, 等. 分?jǐn)?shù)階傅里葉變換及其應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2009: 11–12. 何友, 關(guān)鍵, 彭應(yīng)寧, 等. 雷達(dá)自動(dòng)檢測(cè)與恒虛警處理[M]. 北京: 清華大學(xué)出版社, 1999: 146–147. 王瑜, 李小波, 周青松, 等. 基于FRFT窄帶濾波的LFM信號(hào)研究[J]. 火力與指揮控制, 2016, 41(12): 41–43 doi: 10.3969/j.issn.1002-0640.2016.12.009WANG Yu, LI Xiaobo, ZHOU Qingsong, et al. Study of LFM signal based on FRFT domain narrowband filter[J]. Fire Control&Command Control, 2016, 41(12): 41–43 doi: 10.3969/j.issn.1002-0640.2016.12.009 FAN H L, XU Z, CHENG S Y, et al. The parameters estimation of LFM pulse signal based on FrFT[C]. The 2016 International Conference on Mechanical Engineering and Control System, Wuhan, China, 2017: 249–257. SONG J and LIU Y. Parameter estimation of LFM signal by direct and spline interpolation based on FrFT[J]. Lecture Notes in Electrical Engineering, 2013, 210: 41–48 doi: 10.1007/978-3-642-34528-9_5 何友, 修建娟, 張晶煒, 等. 雷達(dá)數(shù)據(jù)處理及應(yīng)用[M]. 北京: 電子工業(yè)出版社, 2010: 35–37 饒彬.對(duì)抗條件下彈道目標(biāo)的雷達(dá)跟蹤技術(shù)研究[D]. [博士論文], 國(guó)防科學(xué)技術(shù)大學(xué), 2011 周文輝, 李琳, 陳國(guó)海. 一種有效的RGPO干擾識(shí)別算法及性能分析[J]. 電子學(xué)報(bào), 2007, 35(6): 1165–1169 doi: 10.3321/j.issn:0372-2112.2007.06.031ZHOU Wenhui, LI Lin, and CHEN Guohai. An effective algorithm for discriminating RGPO with performance analysis[J].Acta Electronic Sinica, 2007, 35(6): 1165–1169 doi: 10.3321/j.issn:0372-2112.2007.06.031 ABAVISANI M and PATEL V M. Multimodal sparse and low-rank subspace clustering[J]. Information Fusion, 2018, 39: 168–177 doi: 10.1016/j.inffus.2017.05.002 ARIAS-CASTRO E and PU X. A simple approach to sparse clustering[J]. Computational Statistics&Data Analysis, 2017, 105(6): 217–228 doi: 10.1016/j.csda.2016.08.003 -