未知雜波條件下樣本集校正的勢(shì)估計(jì)概率假設(shè)密度濾波算法
doi: 10.11999/JEIT170666 cstr: 32379.14.JEIT170666
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61372003, 61503293)
A Cardinalized Probability Hypothesis Density Filter with Unknown Clutter Estimation Using Corrected Sample Set
Funds:
The National Natural Science Foundation of China (61372003, 61503293)
-
摘要: 在貝葉斯框架下的多目標(biāo)跟蹤算法中,總是假設(shè)雜波的先驗(yàn)信息是已知的。然而,實(shí)際應(yīng)用中,雜波分布一般是未知的,假設(shè)的雜波分布往往與實(shí)際情況匹配度差,難以保證濾波精度。針對(duì)該問題,該文研究了未知雜波勢(shì)估計(jì)概率假設(shè)密度(CPHD)濾波算法。首先,提出一種基于狄利克雷過程混合模型(DPMM)類的未知雜波CPHD算法,該算法能夠自動(dòng)選取合適的類數(shù)對(duì)雜波進(jìn)行描述,有效降低了雜波空間分布估計(jì)的誤差。此外,提出樣本集校正的思想,并將其引入所提算法,通過去除樣本集中由真實(shí)目標(biāo)產(chǎn)生的量測(cè),較好地解決了雜波數(shù)過估和目標(biāo)數(shù)低估的問題。與傳統(tǒng)算法相比,所提算法的濾波精度更接近于雜波信息匹配情況下的性能,仿真結(jié)果驗(yàn)證了其優(yōu)越性與魯棒性。
-
關(guān)鍵詞:
- 多目標(biāo)跟蹤 /
- 參數(shù)估計(jì) /
- 未知雜波 /
- 狄利克雷過程混合模型 /
- 勢(shì)估計(jì)概率假設(shè)密度濾波
Abstract: In multi-target tracking algorithms under the Bayesian filtering framework, it is usually assumed that the priori knowledge of clutter is known. However, in practice, the knowledge of clutter is usually unknown, and the assumption of clutter may not agree with the truth, resulting in the filtering precision declining. For this problem, this paper addresses the problem of Cardinalized Probability Hypothesis Density (CPHD) filter with clutter estimation. Firstly, this paper presents a new CPHD filter with clutter estimation based on Dirichlet Process Mixture Model (DPMM). Thus, this DPMM--CPHD algorithm can reduce the estimation error of the clutter spatial distribution effectively by selecting an appropriate class number. Secondly, to solve the clutter overestimation and cardinality underestimation problems, a correction idea of the sample set via CPHD filter recursion is proposed. By introducing this idea to the DPMM--CPHD algorithm, an improved DPMM--CPHD algorithm is proposed to solve this intractability of errors on clutter number and target number. Simulation results show that the proposed algorithm can effectively estimate the unknown parameters of clutter and has a good performance of multi-target tracking. -
LI Bo and PANG Fuwen. Improved probability hypothesis density filter for multitarget tracking[J]. Nonlinear Dynamics, 2014, 76(1): 367-376. doi: 10.1007/s11071-013-1131-1. SI Weijian, WANG Liwei, and QU Zhiyu. A measurement- driven adaptive probability hypothesis density filter for multitarget tracking[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1689-1698. doi: 10.1016/j.cja.2015.10.004. 劉俊, 劉瑜, 何友, 等. 雜波環(huán)境下基于全鄰模糊聚類的聯(lián)合概率數(shù)據(jù)互聯(lián)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1438-1445. doi: 10.11999/JEIT150849. LIU Jun, LIU Yu, HE You, et al. Joint probabilistic data association algorithm based on all-neighbor fuzzy clustering in clutter[J]. Journal of Electronics Information Technology, 2016, 38(6): 1438-1445. doi: 10.11999/JEIT150849. 徐從安, 何友, 夏沭濤, 等. 基于隨機(jī)攝動(dòng)再采樣的粒子概率假設(shè)密度濾波器[J]. 電子與信息學(xué)報(bào), 2016, 38(11): 2819-2825. doi: 10.11999/JEIT160114. XU Cong'an, HE You, XIA Shutao, et al. Particle probability hypothesis density filter based on stochastic perturbation resampling[J]. Journal of Electronics Information Technology, 2016, 38(11): 2819-2825. doi: 10.11999/JEIT 160114. 袁常順, 王俊, 孫進(jìn)平, 等. 一種幅度信息輔助多伯努利濾波算法[J]. 電子與信息學(xué)報(bào), 2016, 38(2): 464-471. doi: 10.11999 /JEIT150683. YUAN Changshun, WANG Jun, SUN Jinping, et al. A multi- Bernoulli filtering algorithm using amplitude information[J]. Journal of Electronics Information Technology, 2016, 38(2): 464-471. doi: 10.11999/JEIT150683. YANG Jinlong and GE Hongwei. Adaptive probability hypothesis density filter based on variational Bayesian approximation for multi-target tracking[J]. Radar Sonar Navigation Iet, 2013, 7(9): 959-967. doi: 10.1049/iet-rsn.2012. 0357. 楊峰, 張婉瑩. 一種多模型貝努利粒子濾波機(jī)動(dòng)目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報(bào), 2017, 39(3): 634-639. doi: 10.11999/ JEIT160467. YANG Feng and ZHANG Wanying. Multiple model Bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics Information Technology, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467. MAHLER Ronald. Multi-target Bayes filtering via first-order multi-target moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 16(2): 11521178. doi: 10.1109 /TAES.2003.1261119. 吳衛(wèi)華, 江晶, 馮訊, 等. 基于高斯混合勢(shì)化概率假設(shè)密度的脈沖多普勒雷達(dá)多目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報(bào), 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232. WU Weihua, JIANG Jing, FENG Xun, et al. Multi-target tracking algorithm based on Gaussian mixture cardinalized probability hypothesis density for pulse doppler radar[J]. Journal of Electronics Information Technology, 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232. VO Ba Tuong, VO Ba Ngu, and CANTONI Antonio. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567. doi: 10.1109/TSP.2007. 894241. MAHLER Ronald, VO Ba Tuong, and VO Ba Ngu. CPHD filtering with unknown clutter rate and detection profile[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3497-3513. doi: 10.1109/TSP.2011.2128316. BEARD Michael, VO Ba Tuong, and VO Ba Ngu. Multitarget filtering with unknown clutter density using a bootstrap GMCPHD filter[J]. IEEE Signal Processing Letters, 2013, 20(4): 323-326. doi: 10.1109/LSP.2013.2244594. LIAN Feng, HAN Chongzhao, and LIU Weifeng. Estimating unknown clutter intensity for PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2066-2078. doi: 10.1109/TAES.2010.5595616. LIU Weifeng, CUI Hailong, and WEN Chenglin. A time- varying clutter intensity estimation algorithm by using Gibbs sampler and BIC[C]. IEEE International Conference on Information Fusion, Heidelberg, Germany, 2016: 1-8. NSOESIE Elaine O, LEMAN Scotland C, and MARATHE Marathe V. A Dirichlet process model for classifying and forecasting epidemic curves[J]. Bmc Infectious Diseases, 2014, 14(2): 1-12. doi: 10.1186/1471-2334-14-12. WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse Bayesian learning with Dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275-289. doi: 10.1109/TSP.2015. 2481790. MUTHUKUMARANA Saman, and TIWARI Ram C. Meta- analysis using Dirichlet process[J]. Statistical Methods in Medical Research, 2016, 25(1): 352. doi: 10.1177/ 0962280212453891. SUN Xing, YUNG Nelson H C, and LAM Edmund Y. Unsupervised tracking with the doubly stochastic Dirichlet process mixture model[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9): 2594-2599. doi: 10.1109 /TITS.2016.2518212. BLEI D M, GRIFFITHS T L, and JORDAN M I. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies[J]. Journal of the ACM, 2010, 57(2): 1-30. doi: 10.1145/1667053.1667056. -
計(jì)量
- 文章訪問數(shù): 1215
- HTML全文瀏覽量: 191
- PDF下載量: 155
- 被引次數(shù): 0