一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

未知雜波條件下樣本集校正的勢(shì)估計(jì)概率假設(shè)密度濾波算法

楊丹 姬紅兵 張永權(quán)

楊丹, 姬紅兵, 張永權(quán). 未知雜波條件下樣本集校正的勢(shì)估計(jì)概率假設(shè)密度濾波算法[J]. 電子與信息學(xué)報(bào), 2018, 40(4): 912-919. doi: 10.11999/JEIT170666
引用本文: 楊丹, 姬紅兵, 張永權(quán). 未知雜波條件下樣本集校正的勢(shì)估計(jì)概率假設(shè)密度濾波算法[J]. 電子與信息學(xué)報(bào), 2018, 40(4): 912-919. doi: 10.11999/JEIT170666
YANG Dan, JI Hongbing, ZHANG Yongquan. A Cardinalized Probability Hypothesis Density Filter with Unknown Clutter Estimation Using Corrected Sample Set[J]. Journal of Electronics & Information Technology, 2018, 40(4): 912-919. doi: 10.11999/JEIT170666
Citation: YANG Dan, JI Hongbing, ZHANG Yongquan. A Cardinalized Probability Hypothesis Density Filter with Unknown Clutter Estimation Using Corrected Sample Set[J]. Journal of Electronics & Information Technology, 2018, 40(4): 912-919. doi: 10.11999/JEIT170666

未知雜波條件下樣本集校正的勢(shì)估計(jì)概率假設(shè)密度濾波算法

doi: 10.11999/JEIT170666 cstr: 32379.14.JEIT170666
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61372003, 61503293)

A Cardinalized Probability Hypothesis Density Filter with Unknown Clutter Estimation Using Corrected Sample Set

Funds: 

The National Natural Science Foundation of China (61372003, 61503293)

  • 摘要: 在貝葉斯框架下的多目標(biāo)跟蹤算法中,總是假設(shè)雜波的先驗(yàn)信息是已知的。然而,實(shí)際應(yīng)用中,雜波分布一般是未知的,假設(shè)的雜波分布往往與實(shí)際情況匹配度差,難以保證濾波精度。針對(duì)該問題,該文研究了未知雜波勢(shì)估計(jì)概率假設(shè)密度(CPHD)濾波算法。首先,提出一種基于狄利克雷過程混合模型(DPMM)類的未知雜波CPHD算法,該算法能夠自動(dòng)選取合適的類數(shù)對(duì)雜波進(jìn)行描述,有效降低了雜波空間分布估計(jì)的誤差。此外,提出樣本集校正的思想,并將其引入所提算法,通過去除樣本集中由真實(shí)目標(biāo)產(chǎn)生的量測(cè),較好地解決了雜波數(shù)過估和目標(biāo)數(shù)低估的問題。與傳統(tǒng)算法相比,所提算法的濾波精度更接近于雜波信息匹配情況下的性能,仿真結(jié)果驗(yàn)證了其優(yōu)越性與魯棒性。
  • LI Bo and PANG Fuwen. Improved probability hypothesis density filter for multitarget tracking[J]. Nonlinear Dynamics, 2014, 76(1): 367-376. doi: 10.1007/s11071-013-1131-1.
    SI Weijian, WANG Liwei, and QU Zhiyu. A measurement- driven adaptive probability hypothesis density filter for multitarget tracking[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1689-1698. doi: 10.1016/j.cja.2015.10.004.
    劉俊, 劉瑜, 何友, 等. 雜波環(huán)境下基于全鄰模糊聚類的聯(lián)合概率數(shù)據(jù)互聯(lián)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1438-1445. doi: 10.11999/JEIT150849.
    LIU Jun, LIU Yu, HE You, et al. Joint probabilistic data association algorithm based on all-neighbor fuzzy clustering in clutter[J]. Journal of Electronics Information Technology, 2016, 38(6): 1438-1445. doi: 10.11999/JEIT150849.
    徐從安, 何友, 夏沭濤, 等. 基于隨機(jī)攝動(dòng)再采樣的粒子概率假設(shè)密度濾波器[J]. 電子與信息學(xué)報(bào), 2016, 38(11): 2819-2825. doi: 10.11999/JEIT160114.
    XU Cong'an, HE You, XIA Shutao, et al. Particle probability hypothesis density filter based on stochastic perturbation resampling[J]. Journal of Electronics Information Technology, 2016, 38(11): 2819-2825. doi: 10.11999/JEIT 160114.
    袁常順, 王俊, 孫進(jìn)平, 等. 一種幅度信息輔助多伯努利濾波算法[J]. 電子與信息學(xué)報(bào), 2016, 38(2): 464-471. doi: 10.11999 /JEIT150683.
    YUAN Changshun, WANG Jun, SUN Jinping, et al. A multi- Bernoulli filtering algorithm using amplitude information[J]. Journal of Electronics Information Technology, 2016, 38(2): 464-471. doi: 10.11999/JEIT150683.
    YANG Jinlong and GE Hongwei. Adaptive probability hypothesis density filter based on variational Bayesian approximation for multi-target tracking[J]. Radar Sonar Navigation Iet, 2013, 7(9): 959-967. doi: 10.1049/iet-rsn.2012. 0357.
    楊峰, 張婉瑩. 一種多模型貝努利粒子濾波機(jī)動(dòng)目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報(bào), 2017, 39(3): 634-639. doi: 10.11999/ JEIT160467.
    YANG Feng and ZHANG Wanying. Multiple model Bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics Information Technology, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467.
    MAHLER Ronald. Multi-target Bayes filtering via first-order multi-target moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 16(2): 11521178. doi: 10.1109 /TAES.2003.1261119.
    吳衛(wèi)華, 江晶, 馮訊, 等. 基于高斯混合勢(shì)化概率假設(shè)密度的脈沖多普勒雷達(dá)多目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報(bào), 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232.
    WU Weihua, JIANG Jing, FENG Xun, et al. Multi-target tracking algorithm based on Gaussian mixture cardinalized probability hypothesis density for pulse doppler radar[J]. Journal of Electronics Information Technology, 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232.
    VO Ba Tuong, VO Ba Ngu, and CANTONI Antonio. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567. doi: 10.1109/TSP.2007. 894241.
    MAHLER Ronald, VO Ba Tuong, and VO Ba Ngu. CPHD filtering with unknown clutter rate and detection profile[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3497-3513. doi: 10.1109/TSP.2011.2128316.
    BEARD Michael, VO Ba Tuong, and VO Ba Ngu. Multitarget filtering with unknown clutter density using a bootstrap GMCPHD filter[J]. IEEE Signal Processing Letters, 2013, 20(4): 323-326. doi: 10.1109/LSP.2013.2244594.
    LIAN Feng, HAN Chongzhao, and LIU Weifeng. Estimating unknown clutter intensity for PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2066-2078. doi: 10.1109/TAES.2010.5595616.
    LIU Weifeng, CUI Hailong, and WEN Chenglin. A time- varying clutter intensity estimation algorithm by using Gibbs sampler and BIC[C]. IEEE International Conference on Information Fusion, Heidelberg, Germany, 2016: 1-8.
    NSOESIE Elaine O, LEMAN Scotland C, and MARATHE Marathe V. A Dirichlet process model for classifying and forecasting epidemic curves[J]. Bmc Infectious Diseases, 2014, 14(2): 1-12. doi: 10.1186/1471-2334-14-12.
    WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse Bayesian learning with Dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275-289. doi: 10.1109/TSP.2015. 2481790.
    MUTHUKUMARANA Saman, and TIWARI Ram C. Meta- analysis using Dirichlet process[J]. Statistical Methods in Medical Research, 2016, 25(1): 352. doi: 10.1177/ 0962280212453891.
    SUN Xing, YUNG Nelson H C, and LAM Edmund Y. Unsupervised tracking with the doubly stochastic Dirichlet process mixture model[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9): 2594-2599. doi: 10.1109 /TITS.2016.2518212.
    BLEI D M, GRIFFITHS T L, and JORDAN M I. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies[J]. Journal of the ACM, 2010, 57(2): 1-30. doi: 10.1145/1667053.1667056.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1215
  • HTML全文瀏覽量:  191
  • PDF下載量:  155
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-07-07
  • 修回日期:  2017-12-21
  • 刊出日期:  2018-04-19

目錄

    /

    返回文章
    返回