運(yùn)營商網(wǎng)絡(luò)中面向資源碎片優(yōu)化的網(wǎng)絡(luò)服務(wù)鏈構(gòu)建策略
doi: 10.11999/JEIT170641 cstr: 32379.14.JEIT170641
-
2.
(電子科技大學(xué)通信抗干擾技術(shù)國家級重點(diǎn)實(shí)驗(yàn)室 成都 710077)
-
3.
(奧本大學(xué)計(jì)算機(jī)科學(xué)與軟件工程學(xué)院 美國阿拉巴馬州 奧本市 36849)
國家自然科學(xué)基金(61631004, 61471089),重慶基礎(chǔ)與前沿研究計(jì)劃項(xiàng)目(cstc2013jcyjA40024),中央高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(ZYGX2015Z005)
Construction Policy of Network Service Chain Oriented to Resource Fragmentation Optimization in Operator Network
-
2.
(National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu 710077, China)
-
3.
(Department of Computer Science and Software Engineering, Auburn University, Auburn 36849, United States of America)
The National Natural Science Foundation of China (61631004, 61471089), The Basic and Frontier Research Project of Chongqing (cstc2013jcyjA40024), The Fundamental Research Funds for the Central Universities (ZYGX2015Z005)
-
摘要: 網(wǎng)絡(luò)功能虛擬化(NFV)的引入使得運(yùn)營商網(wǎng)絡(luò)的網(wǎng)絡(luò)功能不再依賴于專用硬件設(shè)備且服務(wù)能力更具彈性。為更有效地使用基于NFV的運(yùn)營商網(wǎng)絡(luò)中的資源,該文提出一種網(wǎng)絡(luò)服務(wù)鏈(NSC)的優(yōu)化構(gòu)建策略。和已有研究工作不同,該文從減少因計(jì)算資源和網(wǎng)絡(luò)資源這兩類資源的不合理使用產(chǎn)生的資源碎片角度出發(fā),以最大化運(yùn)營商網(wǎng)絡(luò)能容納的業(yè)務(wù)流數(shù)量為目標(biāo),建立NSC構(gòu)建的數(shù)學(xué)模型,且提出一種新的貪心NSC構(gòu)建策略,該策略融合了路徑選擇和NSC的多個(gè)VNF部署。數(shù)值仿真實(shí)驗(yàn)表明,在相同資源總量的情況下與典型策略相比,所提策略能夠容納更多的業(yè)務(wù)流,實(shí)現(xiàn)更低的端到端的數(shù)據(jù)延遲,有效提高了運(yùn)營商網(wǎng)絡(luò)中通用服務(wù)器和交換機(jī)的資源利用率。
-
關(guān)鍵詞:
- 網(wǎng)絡(luò)功能虛擬化 /
- 網(wǎng)絡(luò)服務(wù)鏈 /
- 運(yùn)營商網(wǎng)絡(luò)
Abstract: With the introduction of Network Function Virtualization (NFV), the network functions of operator networks are no longer dependent on dedicated hardware devices, and service capabilities of carrier network are more resilient than ever. For more efficient use of resources in NFV-based operator networks, this paper proposes a construction policy of Network Service Chain (NSC). This paper aims to maximize the number of flows that the carrier network can accommodate, a mathematical model is established for NSC construction from the point of view of reducing resource fragmentation due to the unreasonable use of computing resources and network resources. A new greedy NSC construction strategy is designed, which combines the path selection and multiple VNFs deployment of NSC. Numerical simulation result shows that the proposed policy can accommodate more flows and achieve lower end-to-end data latency than the typical policies in the case of the same amount of resources, which improves effectively resource utilization of the general server and switch in operator network. -
CHATRAS B and OZOG F F. Network functions virtualization: The portability challenge[J]. IEEE Network, 2016, 30(4): 4-8. doi: 10.1109/MNET.2016.7513857. ABDELWAHAB S, HAMDAOUI B, GUIZANI M, et al. Network function virtualization in 5G[J]. IEEE Communications Magazine, 2016, 54(4): 84-91. doi: 10.1109/ MCOM.2016.7452271. ERAMO V, AMMAR M, and LACACCA F G. Migration energy aware reconfigurations of virtual network function instances in NFV architectures[J]. IEEE Access, 2017, 5: 4927-4938. doi: 10.1109/ACCESS.2017.2685437. SUN Songlin, KADOCH M, GONG Liang, et al. Integrating network function virtualization with SDR and SDN for 4G/5G networks[J]. IEEE Network, 2015, 29(3): 54-59. doi: 10.1109/MNET.2015.7113226. BLENK A, BASTA A, REISSLEIN M, et al. Survey on network virtualization hypervisors for software defined networking[J]. IEEE Communications Surveys Tutorials, 2016, 18(1): 655-685. doi: 10.1109/COMST.2015.2489183. PHAN C, TRAN N H, REN Shaolei, et al. Traffic-aware and energy-efficient vNF placement for service chaining: Joint sampling and matching approach[J]. IEEE Transactions on Services Computing, 2017. doi: 10.1109/TSC. 2017.2671867. HERRERA J G and BOTERO J F. Resource allocation in NFV: A comprehensive survey[J]. IEEE Transactions on Network and Service Management, 2016, 13(3): 518-532. doi: 10.1109/TNSM.2016.2598420. COHAN R, LIANE L E, NAOR J S, et al. Near optimal placement of virtual network functions[C]. 2015 IEEE Conference on Computer Communications, Hong Kong, China, 2015: 1346-1354. doi: 10.1109/ INFOCOM.2015. 7218511. MOENS H and TURCK F D. VNF-P: A model for efficient placement of virtualized network functions[C]. Proceedings of the 10th International Conference on Network and Service Management (CNSM) and Workshop, Rio de Janeiro, Brazil, 2014: 418-423. doi: 10.1109/CNSM.2014.7014205. TALAB T and KSENTINI A. Gateway relocation avoidance- aware network function placement in carrier cloud[C]. Proceedings of ACM MSWIM, Barcelona, Spain, 2013: 341-346. doi: 10.1145/2507924.2508000. BAGAA M, TALEB T, and KSENTINI A. Service-aware network function placement for efficient traffic handling in carrier cloud[C]. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 2014: 2402-2407. doi: 10.1109/WCNC. 2014.6952725. TALEB T, BAGAA M, and KSENTINI A. User mobility- aware virtual network function placement for virtual 5G network infrastructure[C]. Proceedings of IEEE International Conference on Communications (ICC), London, UK, 2015: 3879-3884. doi: 10.1109/ICC.2015.7248929. BASTA A, KELLERER W, HOFFMANN M, et al. Applying NFV and SDN to LTE mobile core gateways: The functions placement problem[C]. Proceedings of ACM the 4th Workshop on All Things Cellular, Chicago, USA, 2014: 321-326. doi: 10.1145/2627585.2627592. LUIZELLI M C, BAYS L R, BURIOL L S, et al. Piecing together the NFV provisioning puzzle: Efficient placement and chaining of virtual network functions[C]. Proceedings of IFIP/IEEE International Symposium on Integrated Network Management (IM), Doblin, Ireland, 2015: 98-106. doi: 10.1109/INM.2015.7140281. GHAZNAVI M, KHAN A, SHAHRIAR N, et al. Elastic virtual network function placement[C]. Proceedings of IEEE 4th International Conference on Cloud Networking (CloudNet), Prague, Czech Republic, 2015: 255-260. doi: 10.1109/CloudNet.2015.7335318. LI Xin and QIAN Chen. The virtual network function placement problem[C]. Proceedings of IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, 2015: 69-70. doi: 10.1109/ INFCOMW.2015.7179347. CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to Algorithms[M]. 3rd Ed, Massachusetts, US: The MIT Press, 2009: 233-237. 王殿君. 基于改進(jìn)A*算法的室內(nèi)移動(dòng)機(jī)器人路徑規(guī)劃[J]. 清華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2012, 52(8): 1085-1089. doi: 10.16511/j.cnki.qhdxxb.2012.08.009. SAIAN P and PRANOWO S. Optimized A-Star algorithm in hexagon-based environment using parallel bidirectional search[C]. Proceedings of IEEE Information Technology and Electrical Engineering, Ningbo, China, 2016: 1-5. doi: 10.1109/ICITEED.2016.7863246. XIA M, SHIRAZIPOUR M, ZHANG Y, et al. Network function placement for NFV chaining in packet/optical datacenters[J]. Journal of Lightwave Technology, 2015, 33(8): 1565-1570. doi: 10.1109/JLT.2015.2388585. -
計(jì)量
- 文章訪問數(shù): 1375
- HTML全文瀏覽量: 168
- PDF下載量: 361
- 被引次數(shù): 0