一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

融合密集卷積與空間轉(zhuǎn)換網(wǎng)絡(luò)的手勢識別方法

馬杰 張繡丹 楊楠 田亞蕾

馬杰, 張繡丹, 楊楠, 田亞蕾. 融合密集卷積與空間轉(zhuǎn)換網(wǎng)絡(luò)的手勢識別方法[J]. 電子與信息學(xué)報, 2018, 40(4): 951-956. doi: 10.11999/JEIT170627
引用本文: 馬杰, 張繡丹, 楊楠, 田亞蕾. 融合密集卷積與空間轉(zhuǎn)換網(wǎng)絡(luò)的手勢識別方法[J]. 電子與信息學(xué)報, 2018, 40(4): 951-956. doi: 10.11999/JEIT170627
MA Jie, ZHANG Xiudan, YANG Nan, TIAN Yalei. Gesture Recognition Method Combining Dense Convolutional with Spatial Transformer Networks[J]. Journal of Electronics & Information Technology, 2018, 40(4): 951-956. doi: 10.11999/JEIT170627
Citation: MA Jie, ZHANG Xiudan, YANG Nan, TIAN Yalei. Gesture Recognition Method Combining Dense Convolutional with Spatial Transformer Networks[J]. Journal of Electronics & Information Technology, 2018, 40(4): 951-956. doi: 10.11999/JEIT170627

融合密集卷積與空間轉(zhuǎn)換網(wǎng)絡(luò)的手勢識別方法

doi: 10.11999/JEIT170627 cstr: 32379.14.JEIT170627
基金項目: 

國家自然科學(xué)基金(61203245),河北省自然科學(xué)基金(F2012202027)

Gesture Recognition Method Combining Dense Convolutional with Spatial Transformer Networks

Funds: 

The National Natural Science Foundation of China (61203245), The Natural Science Foundation of Hebei Province (F2012202027)

  • 摘要: 手勢識別作為人機交互的方式之一,在人工智能日益發(fā)展的今天備受矚目。針對手勢旋轉(zhuǎn)、平移、縮放等形變導(dǎo)致識別率偏低的問題,該文基于密集卷積網(wǎng)絡(luò)(Densenet)與空間轉(zhuǎn)換網(wǎng)絡(luò)(STN)提出了一種新型的網(wǎng)絡(luò)結(jié)構(gòu)Densenet_V2,先利用空間轉(zhuǎn)換網(wǎng)絡(luò)對輸入的樣本和特征圖進行空間變換和對齊,再利用密集卷積網(wǎng)絡(luò)自動提取手勢的有效特征,最后通過線性分類器對手勢進行分類。為防止網(wǎng)絡(luò)模型對樣本數(shù)據(jù)集過度擬合,對網(wǎng)絡(luò)進行訓(xùn)練時在損失函數(shù)中加入L2正則項以實現(xiàn)權(quán)重衰減。在Marcel手勢庫上進行多次實驗。實驗結(jié)果表明,Densenet_V2可以提高對靜態(tài)形變手勢的識別率。
  • PIYUSH K, SIDDHARTH S R, and Anupam A. Hand data glove: A new generation real-time mouse for human- computer interaction[C]. International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, Jharkand, India, 2012: 750-755. doi: 10.1109/RAIT.2012. 6194548.
    WEI W and JING P. Hand segmentation using skin color and background information[C]. International Conference on Machine Learning and Cybernetics, Xi,an, China, 2012: 1487-1492. doi: 10.1109/ICMLC.2012.6359584.
    阮曉鋼, 林佳, 于乃功, 等. 基于多線索的運動手部分割方法[J]. 電子與信息學(xué)報, 2017, 39(5): 1088-1095. doi: 10.11999/ JEIT160730.
    RUAN Xiaogang, LIN Jia, YU Naigong, et al. Moving hand segmentation based on multi-cues[J]. Journal of Electronics Information Technology, 2017, 39(5): 1088-1095. doi: 10. 11999/JEIT160730.
    LIU Y, YIN Y, and ZHANG S. Hand gesture recognition based on HU moments in interaction of virtual reality[C]. International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, China, 2012: 145-148. doi: 10.1109/IHMSC.2012.42.
    DARDAS N H and GEORGANAS N D. Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques[J]. IEEE Transactions on Instrumentation Measurement, 2011, 60(11): 3592-3607. doi: 10.1109/TIM.2011.2161140.
    楊學(xué)文, 馮志全, 黃忠柱, 等. 結(jié)合手勢主方向和類- Hausdorff距離的手勢識別[J]. 計算機輔助設(shè)計與圖形學(xué)學(xué)報, 2016, 28(1): 75-81. doi: 10.3969/j.issn.1003-9775.2016.01.010.
    YANG Xuewen, FENG Zhiquan, HUANG Zhongzhu, et al. Gesture recognition based on combining main direction of gesture and Hausdorff-like distance[J]. Journal of Computer- Aided Design Computer Graphics, 2016, 28(1): 75-81. doi: 10.3969/j.issn.1003-9775.2016.01.010.
    劉淑萍, 劉羽, 於俊, 等. 結(jié)合手指檢測和HOG特征的分層靜態(tài)手勢識別[J]. 中國圖象圖形學(xué)報, 2015, 20(6): 781-788. doi: 10.11834/jig.20150607.
    LIU Shuping, LIU Yu, YU Jun, et al. Hierarchical static hand gesture recognition by combining finger detection and HOG features[J]. Journal of Image and Graphics, 2015, 20(6): 781-788. doi: 10.11834/jig.20150607.
    LIN H I, HSU M H, and CHEN W K. Human hand gesture recognition using a convolution neural network[C]. IEEE International Conference on Automation Science and Engineering, Taipei, China, 2014: 1038-1043. doi: 10.1109/ CoASE.2014.6899454.
    杜堃, 譚臺哲. 復(fù)雜環(huán)境下通用的手勢識別方法[J]. 計算機應(yīng)用, 2016, 36(7): 1965-1970. doi: 10.11772/j.issn.1001-9081. 2016.07.1965.
    DU Kun and TAN Taizhe. General method for gesture recognition in complex environment[J]. Journal of Computer Applications, 2016, 36(7): 1965-1970. doi: 10.11772/j.issn. 1001-9081.2016.07.1965.
    PYO J, JI S, and YOU S. Depth-based hand gesture recognition using convolutional neural networks[C]. International Conference on Ubiquitous Robots and Ambient Intelligence, Xi,an, China, 2016: 225-227. doi: 10.1109/URAI. 2016.7625742.
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791.
    JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[OL]. https://arxiv.org/abs/ 1506.02025v3,2015.
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539.
    GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Massachusetts, USA: MIT Press, 2016: 231-234.
  • 加載中
計量
  • 文章訪問數(shù):  1365
  • HTML全文瀏覽量:  187
  • PDF下載量:  221
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-06-29
  • 修回日期:  2017-11-28
  • 刊出日期:  2018-04-19

目錄

    /

    返回文章
    返回