基于潛在主題的混合上下文推薦算法
doi: 10.11999/JEIT170623 cstr: 32379.14.JEIT170623
-
2.
(長沙理工大學計算機與通信工程學院 長沙 410114)
基金項目:
湖南省教育廳資助重點項目(14A004)
Hybrid Context Recommendation Algorithm Based on Latent Topic
-
2.
(School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China)
Funds:
The Scientific Research Fund of Hunan Provincial Education Department (14A004)
-
摘要: 針對單個環(huán)境上下文中項目訪問記錄稀疏的問題,推薦系統(tǒng)難以獲取與當前環(huán)境上下文關聯(lián)的用戶偏好。該文設計了一種新的上下文關聯(lián)性推薦(CTRR)算法。CTRR算法通過CTRR_LDA模型求解推薦項目出現(xiàn)在特定環(huán)境上下文的概率,并結合上下文后過濾推薦算法,對用戶進行推薦。CTRR_LDA模型是在(LDA)模型的基礎上,結合環(huán)境上下文和項目特征上下文,提出的項目與環(huán)境上下文的關聯(lián)概率模型。該模型將環(huán)境上下文劃分為多個環(huán)境上下文因子,每個環(huán)境上下文因子表示為K維的主題分布,挖掘環(huán)境上下文因子中項目出現(xiàn)的潛在主題特征。利用LDOS-CoMoDa網(wǎng)站上真實的電影數(shù)據(jù)集進行實驗,驗證了算法的可靠性。
-
關鍵詞:
- 推薦 /
- 關聯(lián)概率 /
- 潛在主題 /
- 環(huán)境上下文 /
- 項目特征上下文
Abstract: In the recommendation system, a critical challenge is that individual environment context log may not contain sufficient item access records for mining his/her environment context preferences. This paper designs a Contextual Topic-based Relevance Recommendation (CTRR) algorithm. The CTRR algorithm uses the CTRR_LDA model and a postfiltering strategy to recommend items to users in a specific environment context. CTRR_LDA is an improved LDA model, which combines environment contexts and item feature contexts to calculate the probability of the item appeared. In this model, the environment context is divided into multiple environment context factors. Each environment context factor can be expressed as a K-dimensional topic distribution. Then the CTRR_LDA model is used to mine the latent topic of the items in each environment context factor. According to the experimental results on the LDOS-CoMoDa datasets, the reliability of algorithm is validated in the context-aware recommendation scenario.-
Key words:
- Recommendation /
- Relevance probability /
- Latent topic /
- Environment context /
- Item feature context
-
ABOWD G D, DEY A K, BROWN P J, et al. Towards a better understanding of context and context-awareness[C]. International Symposium on Handheld and Ubiquitous Computing, Karlsruhe, Germany, 1999: 304-307. BALTRUNA L, LUDWIG B, PEER S, et al. Context relevance assessment and exploitation in mobile recommender systems[J]. Personal and Ubiquitous Computing, 2012, 16(5): 507-526. doi: 10.1007/s00779- 011-0417. 徐風苓, 孟祥武, 王立才. 基于移動用戶上下文相似度的協(xié)同過濾推薦算法[J]. 電子與信息學報, 2011, 33(11): 2785-2789. doi: 10.3724/SP.J.1146.2011.00384. XU Fengling, MENG Xiangwu, and WANG Licai. A collaborative filtering recommendation algorithm based on context similarity for mobile users[J]. Journal of Electronics Information Technology, 2011, 33(11): 2785-2789. doi: 10.3724/SP.J.1146.2011.00384. 王立才, 孟祥武, 張玉潔. 上下文感知推薦系統(tǒng)研究[J].軟件學報, 2012, 23(1): 1-20. doi: 10.3724/SP.J.1001.2012.04100. WANG Licai, MENG Xiangwu, and ZHANG Yujie. Context- aware recommender system: A survey of the state-of-art and possible extensions[J]. Chinese Journal of Software, 2012, 23(1): 1-20. doi: 10.3724/SP.J.1001.2012.04100. WU W, ZHAO J, ZHANG C, et al. Improving performance of tensor-based context-aware recommenders using bias tensor factorization with context feature auto-encoding[J]. Knowledge-Based Systems, 2017, 128(C): 71-77. doi: 10.1016/j.knosys.2017.04.011. ZOU B, LI C, TAN L, et al. GPUTENSOR: Efficient tensor factorization for context-aware recommendations[J]. Information Sciences, 2015, 299(11): 159-177. doi: 10.1016/ j.ins.2014.12.004. WU H, YUE K, LIU X, et al. Context-aware recommendation via graph-based contextual modeling and postfiltering[J]. International Journal of Distributed Sensor Networks, 2015, 11(3): 16-26. doi: 10.1155/2015/613612. ALHAMID M F, RAWASHDEH M, DONG H, et al. Exploring latent preferences for context-aware personalized recommendation systems[J]. IEEE Transactions on Human- Machine Systems, 2016, 46(4): 615-623. doi: 10.1109/THMS. 2015.2509965. ALHAHYARI M and KOCHUT K. Semantic context-aware recommendation via topic models leveraging linked open data[C]. International Conference of Web Information Systems Engineering, Lugano, Switzerland, 2016: 263-277. AIMUDENA R I, GUILLERMO J D, and MERCEDES G A. A Semantically enriched context-aware OER recommendation strategy and its application to a computer Science OER repository[J]. IEEE Transactions on Education, 2014, 57(4): 255-260. doi: 10.1109/TE.2014.2309554. YU K, ZHANG B, ZHU H, et al. Towards personalized context-aware recommendation by mining context logs through topic models[C]. Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Kuala Lumpur, Malaysia, 2012: 431-443. ZHU H, CHEN E, XIONG H, et al. Mining mobile user preferences for personalized context-aware recommendation [J]. ACM Transactions on Intelligent Systems Technology, 2014, 5(4): 1-27. doi: 10.1145/2532515. YIN H, CUI B, CHEN L, et al. Modeling location-based user rating profiles for personalized recommendation[J]. ACM Transactions on Knowledge Discovery from Data, 2015, 9(3): 1-41. doi: 10.1145/2663356. YIN H, CUI B, CHEN L, et al. Dynamic user modeling in social media systems[J]. ACM Transactions on Information Systems, 2015, 33(3): 1-44. doi: 10.1145/2699670. BLEI D M, NG A Y, and JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(3): 993-1022. ODIC A, TKALCIC M, KOSIR A, et al. Predicting and detecting the relevant contextual information in a movie-recommender system[J]. Interacting with Computers, 2013, 25(1): 74-90. doi: 10.1093/iwc/iws003. -
計量
- 文章訪問數(shù): 1656
- HTML全文瀏覽量: 241
- PDF下載量: 194
- 被引次數(shù): 0