集體防御機(jī)制下的網(wǎng)絡(luò)行動(dòng)同步建模和穩(wěn)定性
doi: 10.11999/JEIT170619 cstr: 32379.14.JEIT170619
-
2.
(空軍工程大學(xué)信息與導(dǎo)航學(xué)院 西安 710077)
-
3.
(溫州大學(xué)計(jì)算機(jī)科學(xué)與工程學(xué)院 溫州 325035)
國(guó)家自然科學(xué)基金(61573017, 61572367, 61401499)
Synchronization Modeling and Stability of Cyberspace Operation Based on Collective Defensive Mechanism
-
1.
(Information and Navigation Institute, Air Force Engineering University, Xi'n 710077, China)
-
2.
(Information and Navigation Institute, Air Force Engineering University, Xi'n 710077, China)
-
3.
(College of Computer Science and Engineering, Wenzhou University, Wenzhou 325035, China)
The National Natural Science Foundation of China (61573017, 61572367, 61401499)
-
摘要: 該文從網(wǎng)絡(luò)安全集體防御機(jī)制及其同步分析入手,引入不確定性因子,建立了網(wǎng)絡(luò)行動(dòng)同步的改進(jìn)模型。在此基礎(chǔ)上,運(yùn)用Lyapunov函數(shù)分析了網(wǎng)絡(luò)行動(dòng)同步的穩(wěn)定性,提出同步判據(jù),重點(diǎn)分析了系統(tǒng)的邊連接概率、網(wǎng)絡(luò)規(guī)模、備用節(jié)點(diǎn)數(shù)和網(wǎng)絡(luò)不確定性概率等對(duì)同步能力及穩(wěn)定性的影響,最后給出了仿真驗(yàn)證。理論分析和仿真實(shí)驗(yàn)表明,系統(tǒng)的邊連接概率、網(wǎng)絡(luò)規(guī)模、備用節(jié)點(diǎn)數(shù)概率與第2大特征值、最小特征值與第2大特征值之比均呈負(fù)相關(guān)關(guān)系,與網(wǎng)絡(luò)安全集體防御行動(dòng)的全局同步穩(wěn)定和局部同步穩(wěn)定呈負(fù)相關(guān)關(guān)系。
-
關(guān)鍵詞:
- 網(wǎng)絡(luò)行動(dòng) /
- 集體防御 /
- 機(jī)制 /
- 同步 /
- 穩(wěn)定性
Abstract: Based on cyberspace security collective defensive mechanism and its synchronization, uncertainty factors are introduced in the synchronization of cyberspace operation, and the improved synchronization model is established. The stability of cyberspace operation synchronization is analyzed by utilizing Lyapunov function, and synchronization criterions are put forward. What is more, factors that influenced synchronization ability and stability are explored, such as edge connection probability, cyberspace scale, standby elements, and uncertainty probability. Finally, simulations are given. Theoretical research and simulations show that the factors of cyberspace operation synchronization are negatively related with the second eigenvalue and the ratio of minimum eigenvalue to the second eigenvalue, and corresponding negatively related with the cyberspace ecosystems global synchronization stability and local synchronization stability.-
Key words:
- Cyberspace operation /
- Collective defensive /
- Mechanism /
- Synchronization; Stability /
-
Argonne National Laboratory. Enabling distributed security in cyberspace: Building a healthy and resilient cyber ecosystem with automated collective action[R]. Report of Department of Defense, America, 2011. WU Guangyu, SUN Jian, and CHEN Jie. A survery on the security of cyber-physical systems[J]. Control Theory and Technology, 2016, 14(1): 2-10. WANG Yinan, LIN Zhiyun, LIANG Xiao, et al. On modeling of electrical cyber-physical systems considering cyber security [J]. Journal of Zhejiang University Science C, 2016, 17(5): 465-478. doi: 10.1631/FITEE.1500446. MICHAL C, RAFAL K, MARIA P, et al. Comprehensive approach to increase cyber security and resilience[C]. Proceedings of IEEE the 10th International Conference on Availability, Reliability and Security, Toulouse, 2016: 686-692. LIU Lixia, LING Ren, BEI Xiaomeng, et al. Coexistence of synchronization and anti-synchronization of a novel hyperchaotic finance system[C]. Proceedings of IEEE Proceeding of the 34th Chinese Control conference, Hangzhou, 2015: 8585-8589. 高洋, 李麗香, 彭明海, 等. 多重融合復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的自適應(yīng)同步[J]. 物理學(xué)報(bào), 2008, 57(4): 2081-2091. GAO Yang, LI Lixiang, PENG Minghai, et al. Adaptive synchronization in untied complex dynamical network with multi-links[J]. Acta Physica Sinica, 2008, 57(4): 2081-2091. LUIS M, SARA F, and CLARA G. Complete synchronization and delayed synchronization in couplings[J]. Nonlinear Dynamics, 2015, 79(2): 1615-1624. doi: 10.1007/s11071-014- 1764-8. ARIE R, MIRI P, and SHAHAF W. Distributed network synchronization[C]. Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems Tel-Aviv, 2015: 15-19. 趙明, 周濤, 陳關(guān)榮, 等. 復(fù)雜網(wǎng)絡(luò)上動(dòng)力系統(tǒng)同步的研究進(jìn)展如何提高網(wǎng)絡(luò)的同步能力[J]. 物理學(xué)進(jìn)展, 2008, 1(3): 22-34. ZHAO Ming, ZHOU Tao, CHEN Guanrong, et al. A review on synchronization of dynamical systems on complex networks: how to enhance the network synchronizability[J]. Progress in Physics, 2008, 1(3): 22-34. 張檬, 呂翎, 呂娜, 等. 結(jié)構(gòu)與參量不確定的網(wǎng)絡(luò)與網(wǎng)絡(luò)之間的混沌同步[J]. 物理學(xué)報(bào), 2012, 61(22): 1-5. ZHANG Meng, L Ling, L Na, et al. Chaos synchronization between complex networks with uncertain structures and unknown parameters[J]. Acta Physica Sinica, 2012, 61(22): 1-5. GUO Peilin and WANG Yuzhen. Matrix expression and vaccination control for epidemic dynamics over dynamic networks[J]. Control Theory and Technology, 2016, 14(1): 1-5. 孫璽菁, 司守奎. 復(fù)雜網(wǎng)絡(luò)算法與應(yīng)用[M]. 北京: 國(guó)防工業(yè)出版社, 2016: 132-187. SIVAGANESH G. Master stability function for a class of coupled simple nonlinear electronic circuits[J]. Journal of the Korean Physical Society, 2016, 68(5): 628-632. doi: 10.3938 /jkps.68.628. SHU Liang, ZENG Xianlin, and HONG Yiguang. Lyapunov stability and generalized invariance principle for no convex differential inclusions[J]. Control Theory and Technology, 2016, 14(2): 140-150. doi: 10.1007/s11768-016-6037-2. -
計(jì)量
- 文章訪問(wèn)數(shù): 1185
- HTML全文瀏覽量: 142
- PDF下載量: 107
- 被引次數(shù): 0