一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于棧式稀疏自編碼器的低信噪比下低截獲概率雷達信號調(diào)制類型識別

郭立民 寇韻涵 陳濤 張明

郭立民, 寇韻涵, 陳濤, 張明. 基于棧式稀疏自編碼器的低信噪比下低截獲概率雷達信號調(diào)制類型識別[J]. 電子與信息學報, 2018, 40(4): 875-881. doi: 10.11999/JEIT170588
引用本文: 郭立民, 寇韻涵, 陳濤, 張明. 基于棧式稀疏自編碼器的低信噪比下低截獲概率雷達信號調(diào)制類型識別[J]. 電子與信息學報, 2018, 40(4): 875-881. doi: 10.11999/JEIT170588
GUO Limin, KOU Yunhan, CHEN Tao, ZHANG Ming. Low Probability of Intercept Radar Signal Recognition Based on Stacked Sparse Auto-encoder[J]. Journal of Electronics & Information Technology, 2018, 40(4): 875-881. doi: 10.11999/JEIT170588
Citation: GUO Limin, KOU Yunhan, CHEN Tao, ZHANG Ming. Low Probability of Intercept Radar Signal Recognition Based on Stacked Sparse Auto-encoder[J]. Journal of Electronics & Information Technology, 2018, 40(4): 875-881. doi: 10.11999/JEIT170588

基于棧式稀疏自編碼器的低信噪比下低截獲概率雷達信號調(diào)制類型識別

doi: 10.11999/JEIT170588 cstr: 32379.14.JEIT170588
基金項目: 

國家自然科學基金(61571146),中央高?;究蒲袠I(yè)務(wù)費專項資金(HEUCFP201769)

Low Probability of Intercept Radar Signal Recognition Based on Stacked Sparse Auto-encoder

Funds: 

The National Natural Science Foundation of China (61571146), The Fundamental Research Funds for the Central Universities (HEUCFP201769)

  • 摘要: 針對低截獲概率(LPI)雷達信號識別率低且特征提取困難的問題,該文提出一種基于Choi-Williams分布(CWD)和棧式稀疏自編碼器(sSAE)的自動分類識別系統(tǒng)。該系統(tǒng)從反映信號本質(zhì)特征的時頻圖像入手,首先對LPI雷達信號進行CWD時頻分析,獲取2維時頻圖像;然后對得到的時頻原始圖像進行預(yù)處理,并把預(yù)處理后的圖像送入多層稀疏自編碼器(SAE)進行離線訓練;最后把SAE自動提取的特征輸入softmax分類器,實現(xiàn)雷達信號的在線分類識別。仿真結(jié)果表明,信噪比為時,該系統(tǒng)對8種LPI雷達信號(LFM, BPSK, Costas, Frank和T1~T4)的整體平均識別率達到96.4%,在低信噪比條件下明顯優(yōu)于人工設(shè)計提取信號特征的識別方法。
  • SCHLEHER D C. LPI radar: Fact or fiction[J]. IEEE Aerospace and Electronic Systems Magazine, 2006, 21(5): 3-6. doi: 10.1109/MAES.2006.1635166.
    PHILLIP E P. Detecting and Classifying Low Probability of Intercept Radar (Second Edition)[M]. Norwood, MA, USA, Artech House, 2009: 1-15.
    王星, 周一鵬, 周東青, 等. 基于深度置信網(wǎng)絡(luò)和雙譜對角切片的低截獲概率雷達信號識別[J]. 電子與信息學報, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031.
    WANG Xing, ZHOU Yipeng, ZHOU Dongqing, et al. Research on low probability of intercept radar signal recognition using deep belief network and bispectra diagonal slice[J]. Journal of Electronics Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031.
    LUNDEN J and KOIVUNEN V. Automatic radar waveform recognition[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 124-136. doi: 10.1109/JSTSP.2007. 897055.
    ZHANG Ming, LIU Lutao, DIAO Ming, et al. LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16(10): 1682-1706. doi: 10.3390/s16101682.
    HINTON G, OSINDERO S, TEH Y W, et al. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527.
    BENGIO Y, LAMBIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]. Advances in Neural Information Processing Systems, Hyatt Regency Vancouver, 2007: 153-160.
    LECUN Y, BENGIO Y, HINTON G, et al. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539.
    NG A. Sparse autoencoder[J]. CS294A Lecture Notes, 2011, 72(2011): 1-19. doi: 10.1371/journal.pone.0006098.
    TAO Chao, PAN Hongbo, LI Yansheng, et al. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438-2442. doi: 10.1109/LGRS.2015.2482520.
    ZHANG Lu, MA Wenping, ZHANG Dan, et al. Stacked sparse autoencoder in PolSAR data classification using local spatial information[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1359-1363. doi: 10.1109/LGRS.2016. 2586109.
    SUN Wenjun, SHAO Siyu, ZHAO Rui, et al. A sparse auto- encoder-based deep neural network approach for induction motor faults classification[J]. Measurement, 2016, 89: 171-178. doi: 10.1016/j.measurement.2016.04007.
    FENG Zhipeng, LIANG Ming, CHU Fulei, et al. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165-205. doi: 10.1016/j.ymssp.2013.01017.
  • 加載中
計量
  • 文章訪問數(shù):  1799
  • HTML全文瀏覽量:  320
  • PDF下載量:  238
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-06-19
  • 修回日期:  2017-11-21
  • 刊出日期:  2018-04-19

目錄

    /

    返回文章
    返回