基于海情和三次樣條插值算法的艦船雷達散射截面優(yōu)化分析方法
doi: 10.11999/JEIT170562 cstr: 32379.14.JEIT170562
-
2.
(南京師范大學電氣與自動化工程學院 南京 210042)
國家自然科學基金(51475246),江蘇省自然科學基金(BK20161019, BK20131032),江蘇省高校自然科學基金(15KJB 470011)
Optimization Analysis Method on Ship RCS Based on Sea Conditions and Cubic Spline Interpolation Algorithm
-
2.
(School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China)
The National Natural Science Foundation of China (51475246), The Natural Science Foundation of Jiangsu Province (BK20161019, BK20131032), The University Science Research Project of Jiangsu Province (15KJB470011)
-
摘要: 不同風浪等級下的海面會對船艦目標雷達散射截面(RCS)分析產生強烈影響。該文建立了一種船艦模型,利用物理光學法與矩量法的混合算法(PO-MOM)分析了不同海情下的船艦目標遠場單站RCS。之后研究了海情對船艦目標RCS測試結果的影響。最后提出了基于3次樣條插值(Cubic Spline Interpolation, CSI)算法的優(yōu)化補償方法。結果表明,隨著海情等級的增加,艦船RCS降低;利用3次樣條插值算法進行補償,其補償結果的平均值誤差小于0.38 dBsm,最大值誤差小于0.05 dBsm,因此能有效地減少海情對船艦RCS測試結果的影響。
-
關鍵詞:
- 雷達散射截面 /
- 海情 /
- 物理光學與矩量法混合算法 /
- 3次樣條插值算法
Abstract: The sea under different wave levels has an strong impact on the ship target Radar Cross Section (RCS) analysis. The far-field single-station RCS analysis model is established for the ship under different sea conditions based on the Physical Optics with Method Of Moments (PO-MOM) hybrid algorithm. Then the impact of sea conditions on ship RCS results is studied. The ship RCS results are reduced with the sea wave level increasing. Finally, an optimization ship RCS compensation method is proposed under different sea conditions based on Cubic Spline Interpolation (CSI) algorithm. The results show that the average value error and maximum value error of ship RCS results are less than 0.38 dBsm and 0.05 dBsm, respectively by employing the proposed method, which can reduce the influence of sea conditions on ship RCS analysis effectively. -
朱英富, 張國良. 艦船隱身技術[M]. 哈爾濱: 哈爾濱工程大學, 2003: 10-23. ZHU Yingfu and ZHANG Guoliang. Hiding Technology of Vessel[M]. Harbin: Harbin Engineering University, 2003: 10-23. 許小劍, 李曉飛, 習桂杰, 等. 時變海面雷達目標散射現(xiàn)象學模型[M]. 北京: 國防工業(yè)出版社, 2013: 218-224. XU Xiaojian, LI Xiaofei, XI Guijie, et al. Radar Phenomenological Models for Ships on Time-evolving Sea Surface[M]. Beijing: National Defense Industry Press, 2013: 218-224. 崔凱, 許小劍, 毛士藝. 基于高頻混合方法的海上目標電磁散射特性分析[J]. 電子與信息學報, 2008, 30(6): 1500-1503. doi: 10.3724/SP.J.1146.2006.01866. CUI Kai, XU Xiaojian, and MAO Shiyi. EM backscattering of simplified ship model over sea surface based on a high frequency hybrid method[J]. Journal of Electronics Information Technology, 2008, 30(6): 1500-1503. doi: 10.3724/SP.J.1146.2006.01866. GANESH M M, JAGADEESH V K, and ROOPCHAND J. Computation and analysis of RCS for a kinetic energy type anti armour missile at Ka band[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 47(1): 45-59. doi: 10.3233/JAE-130139. LI Yajun, WEI Yinsheng, ZHU Yongpeng, et al. Analysis and simulation for broadening first-order sea clutter spectrum in high frequency hybrid sky-surface wave propagation mode[J]. IET Radar, Sonar Navigation, 2015, 9(6): 609-621. doi: 10.1049/iet-rsn.2014.0008. PASQUALE I, RAFFAELLA G, and PHILIP W. A model for the backscattering from a canonical ship in SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1163-1175. doi: 10.1109/JSTARS.2015.2443557. MIANROODI R Y, HEIDAR H, and ARMAKI H M. Expandable shipboard decoy including adequate RCS by using trihedral corner reflectors[J]. IET Science, Measurement Technology, 2016, 10(5): 485-491. doi: 10.1049/iet-smt.2015.0228. LI Chao, HE Siyuan, YANG Jiong, et al. Monostatic scattering from two-dimensional two-layer rough surfaces using hybrid 3DMLUV-ACA method[J]. International Journal of Applied Electromagnetics and Mechanics, 2013, 42(1): 1-11. doi: 10.3233/JAE-121640. LIU Peng and JIN Yaqiu. The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large-scale rough sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5): 950-956. doi: 10.1109/TGRS.2004.825583. 關瑩, 龔書喜, 張帥, 等. NURBS曲面建模的電大目標的寬帶RCS快速計算[J]. 電子與信息學報, 2010, 32(11): 2730-2734. doi: 10.3724/SP.J.1146.2009.01637. GUAN Ying, GONG Shuxi, ZHANG Shuai, et al. Fast computation of wideband RCS of electrically large targets modeled with NURBS surfaces[J]. Journal of Electronics Information Technology, 2010, 32(11): 2730-2734. doi: 10.3724/SP.J.1146.2009.01637. KIM K, KIM J H, KIM Y H, et al. Numerical investigation on dynamic radar cross section of naval ship considering ocean wave-induced motion[J]. Progress In Electromagnetics Research M, 2012, 27(1): 11-26. doi: 10.2528/PIERM 12101211. CERRUTI M, PASTORINO M, RANDAZZO A, et al. A radar cross section and radar performance evaluation tool for the early stage ship design (ESSD) phase[C]. Oceans, Genova, Italy, 2015: 1-5. ZHAO Ye, YUAN Xiaofeng, ZHANG Min, et al. Radar scattering from the composite ship-ocean scene: facet-based asymptotical model and specular reflection weighted model[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(9): 4810-4815. doi: 10.1109/TAP.2014.2330869. XU Feng and JIN Yaqiu. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(7): 1495-1505. doi: 10.1109/TAP.2009.2016691. HOSSEIN B and MOJTABA D. RCS of a target above a random rough surface with impedance boundaries using GO and PO methods[C]. Antennas and Propagation Society International Symposium, Chicago, USA, 2012: 1-2. ZHANG Lanchao and JIANG Tao. Analysis of radio wave scattering from rough sea surfaces based on high frequency approximation algorithm[C]. Antennas and Propagation, Harbin, China, 2014: 963-966. ZHANG Min, ZHAO Ye, LI Jinxing, et al. Reliable approach for composite scattering calculation from ship over a sea surface based on FBAM and GO-PO models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 775-784. doi: 10.1109/TAP.2016.2633066. MEANA J G, MARTINE LORENZO J A, RAPPAPORT C, et al. A PO-MoM comparison for electrically large dielectric geometries[C]. Antennas and Propagation Society International Symposium, Piscataway, USA, 2009: 1-4. 崔浩, 舒朝君, 王亞. 基于三次樣條插值的鹽度監(jiān)測控制裝置的溫度補償算法[J]. 儀表技術與傳感器, 2016, (6): 88-91. doi: 10.3969/j.issn.1002-1841.2016.06.026. CUI Hao, SHU Chaojun, and WANG Ya. Temperature compensation of salinity monitoring and control device based on cubic spline interpolation[J]. Instrument Technique and Sensor, 2016, (6): 88-91. doi: 10.3969/j.issn.1002-1841.2016. 06.026. -
計量
- 文章訪問數(shù): 1361
- HTML全文瀏覽量: 171
- PDF下載量: 229
- 被引次數(shù): 0