一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于Hess矩陣的多聚焦圖像融合方法

肖斌 唐翰 徐韻秋 李偉生

肖斌, 唐翰, 徐韻秋, 李偉生. 基于Hess矩陣的多聚焦圖像融合方法[J]. 電子與信息學報, 2018, 40(2): 255-263. doi: 10.11999/JEIT170497
引用本文: 肖斌, 唐翰, 徐韻秋, 李偉生. 基于Hess矩陣的多聚焦圖像融合方法[J]. 電子與信息學報, 2018, 40(2): 255-263. doi: 10.11999/JEIT170497
XIAO Bin, TANG Han, XU Yunqiu, LI Weisheng. Multi-focus Image Fusion Based on Hess Matrix[J]. Journal of Electronics & Information Technology, 2018, 40(2): 255-263. doi: 10.11999/JEIT170497
Citation: XIAO Bin, TANG Han, XU Yunqiu, LI Weisheng. Multi-focus Image Fusion Based on Hess Matrix[J]. Journal of Electronics & Information Technology, 2018, 40(2): 255-263. doi: 10.11999/JEIT170497

基于Hess矩陣的多聚焦圖像融合方法

doi: 10.11999/JEIT170497 cstr: 32379.14.JEIT170497
基金項目: 

國家自然科學基金(61572092, U1401252),國家重點研發(fā)計劃(2016YFC1000307-3)

Multi-focus Image Fusion Based on Hess Matrix

Funds: 

The National Natural Science Foundation of China (61572092, U1401252), The National Science and Technology Major Project (2016YFC1000307-3)

  • 摘要: 該文提出了一種基于Hess矩陣的多聚焦圖像融合方法。該方法利用多尺度下的Hess矩陣檢測特征和背景區(qū)域,并在此基礎(chǔ)上,將源圖像分成特征區(qū)域與非特征區(qū)域,分別采用不同的融合策略生成決策圖;然后通過結(jié)合不同部分的決策圖,得到初始決策圖;最后采用后處理方法對初始決策圖進行精化,得到最終的融合圖像。為了提高融合效果,該文還提出了一種基于多尺度Hess矩陣的聚焦評價方法。同時引入積分圖像進行快速計算,以滿足實時性要求。實驗結(jié)果表明,該方法在主觀視覺感知和客觀評價指標方面都要略優(yōu)于現(xiàn)有的方法。
  • LI H, LI X, YU Z, et al. Multifocus image fusion by combining with mixed-order structure tensors and multiscale neighborhood[J]. Information Sciences An International Journal, 2016, s349(C): 25-49. doi: 10.1016/j.ins.2016.02.030.
    BAI X, ZHANG Y, ZHOU F, et al. Quadtree-based multi- focus image fusion using a weighted focus-measure[J]. Information Fusion, 2015, 22: 105-118. doi: 10.1016/j.inffus. 2014.05.003.
    PETROVIC V S and XYDEAS C S. Gradient-based multiresolution image fusion[J]. IEEE Transactions on Image Processing, 2004, 13(2): 228-237. doi: 10.1109/TIP.2004. 823821.
    LEWIS J J, OCALLAGHAN R J, NIKOLOV S G, et al. Pixel-and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119-130. doi: 10.1016/j.inffus. 2005.09.006.
    LI S, KANG X, FANG L, et al. Pixel-level image fusion: A survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. doi: 10.1016/j.inffus.2016.05.004.
    LIU Y, LIU S, and WANG Z. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23(C): 139-155. doi: 10.1016/j.inffus.2014.05.004.
    LI S, KANG X, and HU J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. doi: 10.1109/TIP.2013.2244222.
    LI S, KANG X, HU J, et al. Image matting for fusion of multi-focus images in dynamic scenes[J]. Information Fusion, 2013, 14(2): 147-162. doi: 10.1016/j.inffus.2011.07.001.
    ZHOU Z, LI S, and WANG B. Multi-scale weighted gradient- based fusion for multi-focus images[J]. Information Fusion, 2014, 20(1): 60-72. doi: 10.1016/j.inffus.2013.11.005.
    WANG Z, MA Y, and GU J. Multi-focus image fusion using PCNN[J]. Pattern Recognition, 2010, 43(6): 2003-2016. doi: 10.1016/j.patcog.2010.01.011.
    LOWE and DAVID G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    BAY H, ESS A, and TUYTELAARS T. Speeded-up robust features[J]. Computer Vision Image Understanding, 2008, 110(3): 404-417.
    ZHANG Y, BAI X, and WANG T. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure[J]. Information Fusion, 2017, 35: 81-101. doi: 10.1016/j.inffus.2016.09.006.
    VIOLA P and JONES M. Rapid object detection using a boosted cascade of simple features[C]. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, Hawaii, 2001, (I): 511-518.
    ZHANG Q and LEVINE M D. Robust multi-focus image fusion using multi-task sparse representation and spatial context[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2045-2058. doi: 10.1109/TIP.2016.2524212.
    ZHANG B, LU X, PEI H, et al. Multi-focus image fusion algorithm based on focused region extraction[J]. Neurocomputing, 2016, 174(PB): 733-748. doi: 10.1016/j.ins. 2016.02.030.
    LIU Y, CHEN X, PENG H, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191-207. doi: 10.1016/j.inffus.2016.12.001.
  • 加載中
計量
  • 文章訪問數(shù):  1469
  • HTML全文瀏覽量:  183
  • PDF下載量:  359
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-05-24
  • 修回日期:  2017-10-18
  • 刊出日期:  2018-02-19

目錄

    /

    返回文章
    返回