一種基于高效FrFT的LFM信號檢測與參數(shù)估計(jì)快速算法
doi: 10.11999/JEIT170467 cstr: 32379.14.JEIT170467
基金項(xiàng)目:
國家自然科學(xué)基金(61601343, 61671361, 61301285),中國博士后基金面上 (2016M600768)
A Fast Algorithm of LFM Signal Detection and Parameter Estimation Based on Efficient FrFT
Funds:
The National Natural Science Foundation of China (61601343, 61671361, 61301285), China Postdoctoral Science Foundation Funded Project (2016M600768)
-
摘要: 針對傳統(tǒng)方法對線性調(diào)頻(LFM)信號檢測與參數(shù)估計(jì)運(yùn)算量大的問題,該文提出一種基于高效FrFT的快速算法。首先,分析了高效FrFT原理,指出高效FrFT存在旋轉(zhuǎn)角度的選取、易受初始頻率影響以及抗噪性能差等問題。針對以上問題,該文利用修正的功率譜平滑濾波方法對高效FrFT進(jìn)行改進(jìn)。理論分析表明,該文提出的改進(jìn)算法僅用3次旋轉(zhuǎn)角度即可實(shí)現(xiàn)較低信噪比下LFM信號的檢測和參數(shù)估計(jì)。與傳統(tǒng)的FrFT相比,在保證參數(shù)估計(jì)精度不變的情況下,運(yùn)算復(fù)雜度大大降低,更符合工程上實(shí)時處理的要求。仿真結(jié)果驗(yàn)證了該算法的有效性。
-
關(guān)鍵詞:
- 高效FrFT /
- LFM信號 /
- 修正的功率譜平滑濾波
Abstract: A fast algorithm based on the effective FrFT is proposed to realize the detection and parameter estimation of Linear Frequency Modulation (LFM) signal, since the traditional algorithms have a great computational burden. The effective FrFT is first analyzed, and pointed out to have problems in choosing the rotation angles, being easily affected by initial frequency, and poor anti-noise performance. Faced with the above problems, a modified power spectrum smooth filtering method is used to improve the effective FrFT algorithm. The theoretical analysis indicates that the proposed method based on effective FrFT can realize the detection and parameter estimation of LFM signal in low SNR condition with only three rotation angles. Furthermore, the computational cost is greatly reduced under the guarantee of the same parameter estimation accuracy compared to traditional FrFT. The simulation results verify the effectiveness of the proposed algorithm. -
CZARNECKI K and MOSZYNSLI M. A novel method of local chirp-rate estimation of LFM chirp signals in the time-frequency domain[C]. International Conference on Telecommunications and Signal Processing, Italy, Rome, 2013: 704-708. doi: 10.1109/TSP.2013.6614028. SAHA S and KAY A M. Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 224-230. doi: 10.1109/78.978378. 李秀坤, 吳玉雙. 多分量線性調(diào)頻信號的Wigner-Ville分布交叉項(xiàng)去除[J]. 電子學(xué)報, 2017, 45(2): 315-320. doi: 10.3969/ j.issn.0372-2112.2017.02.008. LI Xiukun and WU Yushuang. Cross-term removal of Wigner-Ville distribution for multi-component LFM signals [J]. Acta Electronica Sinica, 2017, 45(2): 315-320. doi: 10.3969/j.issn. 0372-2112.2017.02.008. BOASHASH B and OUELHA S. An improved design of high-resolution quadratic time-frequency distribution for the analysis of nonstationary multicomponent signal using directional compact kernels[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2701-2713. doi: 10.1109/TSP.2017. 2669899. WOOD J C and BARRY D T. Radon transformation of time-frequency distributions for analysis of multicomponent signals[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3166-3177. doi: 10.1109/78.330375. BARBAROSSA S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1511-1515. doi: 10.1109/78.388866. 劉穎, 陳殿仁, 陳磊, 等. 基于周期Choi-Williams Hough變換的線性調(diào)頻連續(xù)波信號參數(shù)估計(jì)算法[J].電子信息學(xué)報, 2015, 37(5): 1136-1140. doi: 10.11999/JEIT140876. LIU Ying, CHEN Dianren, CHEN Lei et al. Parameter estimation algorithm of linear frequency modulated continuous wave signals based on period Choi-Williams Hough transform[J]. Journal of Electronics Information Technology, 2015, 37(5): 1136-1140. doi: 10.11999/JEIT 140876. WANG M, CHAN A K, and CHUI C K. Linear frequency- modulated signal detection using Radon-ambiguity transform [J]. IEEE Transactions on Signal Processing, 1998, 43(6): 571-586. doi: 10.1109/78.661326. 齊林, 陶然, 周思永, 等. 基于分?jǐn)?shù)階Fourier變換的多分量LFM信號的檢測和參數(shù)估計(jì)[J]. 中國科學(xué)E輯, 2003, 33(8): 750-759. doi: 10.3321/j.issn:1006-9275.2003.08.008. QI Lin, TAO Ran, ZHOU Siyong, et al. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform[J]. Science in China (Series E), 2003, 33(8): 750-759. doi: 10.3321/j.issn:1006- 9275.2003.08.008. 陳艷麗, 郭良浩, 宮在曉. 簡明分?jǐn)?shù)階傅里葉變換及其對線性調(diào)頻信號的檢測和參數(shù)估計(jì)[J]. 聲學(xué)學(xué)報, 2015, 40(6): 761-771. doi: 10.15949/j.cnki.0371-0025.2015.06.001. CHEN Yanli, GUO Lianghao, and GONG Zaixiao. The concise fractional Fourier transform and its application in detection and parameter estimation of the linear frequency- modulated signal[J]. Acta Acustica, 2015, 40(6): 761-771. doi: 10.15949/j.cnki.0371-0025.2015.06.001. ZHANG Xuepan, LIAO Guisheng, ZHU Shengqi, et al. Efficient compressed sensing method for moving targets imaging by exploiting the geometry information of the defocused results[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 517-521. doi: 10.1109/LGRS.2014. 2349035. ALMEIDA L B. The fractional Fourier transform and time- frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3084-3091. doi: 10.1109/78.330368. 趙興浩, 鄧兵, 陶然. 分?jǐn)?shù)階傅里葉變換數(shù)值計(jì)算中的量綱歸一化[J]. 北京理工大學(xué)學(xué)報, 2005, 25(4): 360-364. doi: 10.3969/j.issn.1001-0645.2005.04.019. ZHAO Xinghao, DENG Bing, and TAO Ran. Dimensional normalization in the digital computation of the fractional Fourier transform[J]. Transactions of Beijing Institute of Technology, 2005, 25(4): 360-364. doi: 10.3969/j.issn.1001- 0645.2005.04.019. 張雯雯, 劉黎平. 一種新的相位編碼信號識別方法[J]. 哈爾濱工程大學(xué)學(xué)報, 2009, 30(10): 1204-1208. doi: 10.3969/ j.issn.1006-7043.2009.10.023. ZHANG Wenwen and LIU Liping. A new recognition method for phase-shift keying signals[J]. Journal of Harbin Engineering University, 2009, 30(10): 1204-1208. doi: 10.3969 /j.issn.1006-7043.2009.10.023. -
計(jì)量
- 文章訪問數(shù): 1715
- HTML全文瀏覽量: 280
- PDF下載量: 271
- 被引次數(shù): 0