低復(fù)雜度的可變分?jǐn)?shù)時延濾波器設(shè)計
doi: 10.11999/JEIT170349 cstr: 32379.14.JEIT170349
基金項目:
國家自然科學(xué)基金(61671012)
Low-complexity Design of Variable Fractional Delay Filters
Funds:
The National Natural Science Foundation of China (61671012)
-
摘要: 為實現(xiàn)低復(fù)雜度、高精度的可變分?jǐn)?shù)時延濾波器設(shè)計,該文提出一種截止頻率可控的高效設(shè)計法。該方法將全相位濾波器的解析設(shè)計與三次樣條插值和泰勒級數(shù)展開相結(jié)合,既可以通過設(shè)置時延參數(shù)精確地調(diào)整濾波器的分?jǐn)?shù)時延,又可以通過設(shè)置截止頻率參數(shù)快速配置Farrow結(jié)構(gòu)中各子濾波器的抽頭系數(shù),從而靈活地調(diào)整濾波器的截止頻率。仿真實驗表明,所提方法適用于設(shè)計具有中、低截止頻率的可變分?jǐn)?shù)時延濾波器,其設(shè)計復(fù)雜度相比于現(xiàn)有的加權(quán)最小二乘設(shè)計法低1個數(shù)量級。
-
關(guān)鍵詞:
- 可變分?jǐn)?shù)時延濾波器 /
- 解析設(shè)計 /
- 三次樣條插值 /
- 可控的截止頻率
Abstract: In order to design variable fractional delay filters with low complexity and high accuracy, an efficient design method with controllable cut-off frequency is proposed, which integrates the analytic all-phase filter design, the cubic spline interpolation and Taylor series expansion. In the proposed design, not only the time delay of the filter can be precisely adjusted by setting the delay parameter, but also the tap coefficients of each subfilter in the Farrow structure can be rapidly configured via setting the cut-off frequency parameter, thus the cut-off frequency of the filter can be adjusted flexibly. Numerical simulations show that, the proposed method is especially suitable to design variable fractional delay filters with low or middle cut-off frequencies, and its computation complexity is one order of magnitude lower than that of the existing Weighted Least Squares (WLS) design. -
陳彩蓮, 于宏毅, 沈彩耀, 等. 采樣率轉(zhuǎn)換中Farrow濾波器實現(xiàn)結(jié)構(gòu)研究[J]. 信息工程大學(xué)學(xué)報, 2009, 10(3): 329-332. CHEN Cailian, YU Hongyi, SHEN Caiyao, et al. Efficient implementation for sample rate conversion using Farrow structure[J]. Journal of Information Engineering University, 2009, 10(3): 329-332. OLSSON M, JOHANSSON H, and LOWENBORG P. Time- delay estimation using Farrow-based fractional-delay FIR filters: Filter approximation vs. estimation errors[C]. European Signal Processing Conference, Florence, Italy, 2006: 1-5. PEI Soochang and TSENG Chiencheng. A comb filter design using fractional-sample delay[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1998, 45(5): 649-653. doi: 10.1109/82.673650. LIU Guosui and WEI Cheho. A new variable fractional sample delay filter with nonlinear interpolation[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1992, 39(2): 123-126. doi: 10.1109/82. 205818. DENG Tianbo. High-resolution image interpolation using lagrange-type variable fractional delay filter[C]. International Technical Conference on Circuits Systems, Computers and Communications, Chiang-Mai, 2006: 541-544. 韋文, 李寧, 湯俊, 等. 基于分?jǐn)?shù)時延的寬帶自適應(yīng)波束形成[J]. 清華大學(xué)學(xué)報(自然科學(xué)版), 2011, 51(7): 988-992. doi: 10.16511/j.cnki.qhdxxb.2011.07.016. WEI Wen, LI Ning, TANG Jun, et al. Wideband adaptive beamforming based on fractional delay[J]. Journal of Tsinghua University(Natural Science), 2011, 51(7): 988-992. doi: 10.16511/j.cnki.qhdxxb.2011.07.016. FARROW C W. A continuously variable digital delay element[C]. IEEE International Symposium on Circuits and Systems, 1988, Espoo, Finland, 3: 2641-2645. doi: 10.1109 /ISCAS.1988.15483. HAI Huyen Dam. Design of allpass variable fractional delay filter with powers-of-two coefficients[J]. IEEE Signal Processing Letters, 2015, 22(10): 1643-1646. doi: 10.1109/ LSP.2015.2420652. JOHANSSON H and HERMANOWICZ E. Two-rate based low-complexity variable fractional delay FIR filter structures [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(1): 136-149. doi: 10.1109/TCSI.2012. 2215697. DENG Tianbo and SOONTORNWONG P. Delay-error- constrained minimax design of all-pass variable-fractional- delay digital filters[J]. Signal Processing, 2016, 120(C): 438-447. doi: 10.1016/j.sigpro.2015.10.002. DENG Tianbo. Coefficient-relation development and low- complexity odd-order variable-fractional-delay filter design[J]. Journal of the Franklin Institute, 2017, 354(2): 1195-1208. DENG Tianbo. Design and parallel implementation of FIR digital filters with simultaneously variable magnitude and non-integer phase-delay[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2003, 50(5): 243-250. doi: 10.1109/TCSII.2003.809713. DENG Tianbo and LIAN Yong. Weighted-least-squares design of variable fractional-delay FIR filters using coefficient symmetry[J]. IEEE Transactions on Signal Processing, 2006, 54(8): 3023-3038. doi: 10.1109/TSP.2006.875385. HUANG Yunda, PEI Soochang, and SHYU Jongjy. WLS design of variable fractional-delay FIR filters using coefficient relationship[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009, 56(3): 220-224. doi: 10.1109/TCSII. 2008.2011598. 黃翔東, 王兆華. 基于兩種對稱頻率采樣的全相位FIR濾波器設(shè)計[J]. 電子與信息學(xué)報, 2007, 29(2): 478-481. HUANG Xiangdong and WANG Zhaohua. All-phase FIR filter design based on two kinds of symmetric frequency sampling[J]. Journal of Electronics Information Technology, 2007, 29(2): 478-481. HUANG Xiangdong, JING Senxue, WANG Zhaohua, et al. Closed-form FIR filter design based on convolution window spectrum interpolation[J]. IEEE Transactions on Signal Processing, 2016, 64(5): 1173-1186. doi: 10.1109/TSP.2015. 2494869. HUANG Xiangdong, WANG Yuedong, YAN Ziyang, et al. Closed-form FIR filter design with accurately controllable cut-off frequency[J]. Circuits, Systems, and Signal Processing, 2017, 36(2): 721-741. doi: 10.1007/s00034-016-0330-7. 黃翔東, 韓溢文, 閆子陽, 等. 基于全相位濾波的互素譜分析的高效設(shè)計[J]. 系統(tǒng)工程與電子技術(shù), 2017, 39(1): 23-33. doi: 10.3969/j.issn.1001-506X.2017.01.05. HUANG Xiangdong, HAN Yiwen, YAN Ziyang, et al. Efficient design of co-prime spectral analysis based on all-phase filtering[J]. Systems Engineering and Electronics, 2017, 39(1): 23-33. doi: 10.3969/j.issn.1001-506X.2017.01.05. 黃翔東, 王越冬, 靳旭康, 等. 無窗全相位FFT/FFT相位差頻移補償頻率估計器[J]. 電子與信息學(xué)報, 2016, 38(5): 1135-1142. doi: 10.11999/JEIT151041. HUANG Xiangdong, WANG Yuedong, JIN Xukang, et al. No-windowed apFFT/FFT phase difference frequency estimator based on frequency-shift compensation[J]. Journal of Electronics Information Technology, 2016, 38(5): 1135-1142. doi: 10.11999/JEIT151041. VASEGHI S V. Advanced Digital Signal Processing and Noise Reduction[M]. New York: John Wiley Sons, 2000: 305-306. -
計量
- 文章訪問數(shù): 1580
- HTML全文瀏覽量: 211
- PDF下載量: 198
- 被引次數(shù): 0