輕量擴(kuò)展的射頻指紋地圖構(gòu)造方法
doi: 10.11999/JEIT170338 cstr: 32379.14.JEIT170338
-
2.
(燕山大學(xué)信息科學(xué)與工程學(xué)院 秦皇島 066004)
-
3.
(河北省質(zhì)量技術(shù)監(jiān)督局信息中心 石家莊 050091)
國家自然科學(xué)基金(61672448, 61772453),河北省留學(xué)歸國人員擇優(yōu)資助項目(CL201625)
A Scalable Lightweight Radio Fingerprint Map Construction Method
-
2.
(School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004,China)
-
3.
(Information Center in Quality and Technical Supervision Bureau of Hebei Province, Shijiazhuang 050091, China)
The National Natural Science Foundation of China (61672448, 61772453), The Technology Foundation for Selected Overseas Chinese of Hebei Province (CL201625)
-
摘要: 隨著群智感知和機(jī)器學(xué)習(xí)的融合,基于射頻指紋的室內(nèi)定位技術(shù)引起研究者的廣泛關(guān)注。然而現(xiàn)有工作存在指紋地圖構(gòu)建階段開銷過大形成的可擴(kuò)展性和實時性瓶頸問題。針對這一問題,該文提出一個新穎的輕量可擴(kuò)展指紋地圖構(gòu)造方法(FFIL)。在指紋構(gòu)建階段,將整個室內(nèi)環(huán)境劃分為多個環(huán)路快速分割地圖并獲取射頻指紋;在指紋匹配階段,首先計算AP與目標(biāo)點間的距離,然后選擇與圓環(huán)半徑最相似的環(huán)路上的參考點一一匹配;在定位階段,采用等高線聚類算法來提高定位精度。通過真實數(shù)據(jù)驅(qū)動的大量仿真和實驗證明,F(xiàn)FIL能減小指紋地圖構(gòu)建的開銷,同時提高定位精度和系統(tǒng)實時性。Abstract: Fingerprint-based indoor localization technology is attracted extensive attention of researchers with the fusion of crowd-sensing and machine learning. However, existing approaches have the bottleneck of scalability and instantaneity caused by high radio map construction effort. Focusing on this issue, this paper proposes a novel and scalable lightweight radio map construction method, named FFIL. In the fingerprint construction phase, the whole indoor environment is divided into multi-loop to segment map rapidly and fingerprint data are obtained. In the fingerprint matching phase, the distance is calculated from Access Point (AP) to target firstly, and then the reference point is selected on the loop with most similar with the circle radius to match fingerprint data one by one. In the localization phase, contour-based clustering algorithm is used to improve the positioning accuracy. Abundant simulations and experiments are driven by real data show that FFIL can reduce the overhead of constructing radio fingerprint map and improve the positioning accuracy and the real-time performance of system simultaneously.
-
Key words:
- Indoor localization /
- Fingerprint /
- WiFi /
- Contour /
- Positioning accuracy
-
YOUSSEF M and AGRAWALA A. The Horus WLAN location determination system[C]. International Conference on Mobile Systems, Applications, and Services, Seattle, Washington, USA, 2005: 205-218. doi: 10.1145/1067170. 1067193. BAHL P and PADMANABHAN V. RADAR: An in-building RF-based user location and tracking system[C]. IEEE International Conference on Computer Communications, Tel Aviv, Israel, 2000: 775-784. doi: 10.1109/INFCOM.2000. 832252. WANG Jie, GAO Qinghua, PAN Miao, et al. Toward accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665-6677. doi: 10.1109/TVT.2015.2476495. WANG Jie, GAO Qinghua, YU Yan, et al. Time and energy efficient TOF-based device-free wireless localization[J]. IEEE Transactions on Industrial Informatics, 2016, 12(1): 158-168. doi: 10.1109/TII.2015.2501225. NI L, LIU Y, LAU Y, et al. LANDMARC: Indoor location sensing using active RFID[C]. IEEE International Conference on Pervasive Computing and Communications, Fort Worth, Texas, USA, 2003: 407-415. doi: 10.1109/PERCOM.2003. 1192765. WANG J and KATABI D. Dude, wheres my card? RFID positioning that works with multipath and non-line of sight[C]. Special Interest Group on Data Communication, Hong Kong, China, 2013: 51-62. TARZIA S, DINDA P, DICK R, et al. Indoor localization without infrastructure using the acoustic background spectrum[C]. International Conference on Mobile Systems, Applications, and Services, Bethesda, Maryland, USA, 2011: 155-168. LIU K, LIU X, and LI X. Guoguo: Enabling fine-grained indoor localization via smartphone[C]. International Conference on Mobile Systems, Applications, and Services, Taipei, 2013: 235-248. YANG Sehoon, JUNG Eunmi, and HAN Sangkook. Indoor location estimation based on visible light communication using multiple optical receivers[J]. IEEE Communications Letters, 2013, 17(9): 1834-1837. doi: 10.1109/LCOMM.2013. 070913.131120. ALAHI A, HAQUE A, and LI F. RGB-W: When vision meets wireless[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3289-3297. doi: 10.1109/ICCV. 2015.376. 王小好. 基于藍(lán)牙無線技術(shù)的室內(nèi)定位方法的研究[D]. [碩士論文], 浙江工業(yè)大學(xué), 2007. WANG X H. A Study of indoor location based on Bluetooth technologies[D]. [Master dissertation], Zhejiang University of Technology, 2007. WU Chenshu, YANG Zheng, and LIU Yunhao. Smartphones based crowdsourcing for indoor localization[J]. IEEE Transactions on Mobile Computing, 2015, 14(2): 444-457. doi: 10.1109/TMC.2014.2320254. WANG H, SEN S, ELGOHARY A, et al. No need to war-drive: Unsupervised indoor localization[C]. International Conference on Mobile Systems, Applications, and Services, Low Wood Bay, Lake District, UK, 2012: 197-210. LIU Hongbo, YANG Jie, SIDHOM Simon, et al. Accurate wifi based localization for smartphones using peer assistance [J]. IEEE Transactions on Mobile Computing, 2014, 13(10): 2199-2214. doi: 10.1109/TMC.2013.140. SEN S, LEE J, KIM K, et al. Avoiding multipath to revive inbuilding wifi localization[C]. International Conference on Mobile Systems, Applications, and Services, Taipei, 2013: 249-262. SHU Yuanchao, HUANG Yinghua, ZHANG Jiaqi, et al. Gradient-based fingerprinting for indoor localization and tracking[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2424-2433. doi: 10.1109/TIE.2015.2509917. HE S, HU T, and CHAN S. Contour-based trilateration for indoor fingerprinting localization[C]. ACM Conference on Embedded Networked Sensor Systems, Seoul, South Korea, 2015: 225-238. 王凱. 基于CSI測距的輕量級指紋室內(nèi)定位技術(shù)研究[D]. [碩士論文], 西安電子科技大學(xué), 2014. WANG K. Range-based Lightweight Fingerprint Indoor Localization Using CSI[D]. [Master dissertation], Xidian University, 2014. 張夢丹, 盧光躍, 王宏剛, 等. 基于指紋算法的無線室內(nèi)定位技術(shù)[J]. 電信科學(xué), 2016, (10): 77-86. doi: 10.11959/j.issn. 1000-0801.2016267. ZHANG Mengdan, LU Guangyue, WANG Honggang, et al. Wireless indoor localization technology based on fingerprint algorithm[J]. Telecommunications Science, 2016, (10): 77-86. doi: 10.11959/j.issn.1000-0801.2016267. -
計量
- 文章訪問數(shù): 1734
- HTML全文瀏覽量: 182
- PDF下載量: 264
- 被引次數(shù): 0