WSNs多階段入侵檢測博弈最優(yōu)策略研究
doi: 10.11999/JEIT170323 cstr: 32379.14.JEIT170323
基金項目:
信息保障重點實驗室開放基金(KJ-15-104),河南省科技攻關項目(132102210003)
Optimal Defense Strategy in WSNs Based on the Game of Multi-stage Intrusion Detection
Funds:
The National Science Key Laboratory Fund (KJ-15-104), The Project of Key Scientific and Technological Research of Henan Province (132102210003)
-
摘要: 針對無線傳感器網(wǎng)絡中資源受限的入侵檢測系統(tǒng)策略優(yōu)化問題,該文提出一種多階段動態(tài)入侵檢測博弈模型。該模型利用貝葉斯規(guī)則修正下一階段外部節(jié)點為惡意節(jié)點的后驗概率,通過分析推導給出最易遭受攻擊的節(jié)點集合。以建立的模型和節(jié)點集合為依據(jù),求解了滿足完美貝葉斯均衡條件的入侵檢測最優(yōu)策略。在此基礎上,設計了入侵檢測最優(yōu)策略方案。仿真實驗結果表明,該方案在提高簇形結構檢測防御成功率方面有明顯優(yōu)勢。
-
關鍵詞:
- 無線傳感器網(wǎng)絡 /
- 多階段博弈 /
- 入侵檢測 /
- 后驗概率 /
- 貝葉斯均衡
Abstract: To overcome the problem that the performance of intrusion detection deteriorates significantly in resource-constrained wireless sensor networks, a dynamically multi-stage game model of intrusion detection is proposed. Based on the Bayesian rules and prior probability that external node is a malicious node in this stage, the posterior probability of external node and the set of node vulnerable to attack are formulated respectively. Then, the optimal defense strategy for intrusion detection is calculated accurately according to the conditions of perfect Bayesian equilibrium. On this basis, a novel scheme for intrusion detection is proposed in WSNs based on the optimal strategy of multi-stage game model. Finally, experimental results show that the developed scheme has distinct advantage in improving the success rate of detection and suppression in clustered WSNs. -
郁濱, 周偉偉. ZigBee同頻攻擊檢測抑制模型研究[J]. 電子與信息學報, 2015, 37(9): 2211-2217. doi: 10.11999/JEIT 141395. YU B and ZHOU W W. Co-channel attack detection and suppression model for ZigBee network nodes[J]. Journal of Electronics Information Technology, 2015, 37(9): 2211-2217. doi: 10.11999/JEIT141395. 杜曄, 張亞丹, 黎妹紅, 等. 基于改進FastICA算法的入侵檢測樣本數(shù)據(jù)優(yōu)化方法[J]. 通信學報, 2016, 37(1): 42-48. doi: 10.11959/j.issn.1000-436x.2016006. DU Y, ZHANG Y D, LI M H, et al. Improved Fast ICA algorithm for data optimization processing in intrusion detection[J]. Journal on Communications, 2016, 37(1): 42-48. doi: 10.11959/j.issn.1000-436x.2016006. 楊安, 孫利民, 王小山, 等. 工業(yè)控制系統(tǒng)入侵檢測技術綜述[J]. 計算機研究與發(fā)展, 2016, 53(9): 2039-2054. doi: 10.7544 /issn.1000-1239.2016.20150465. YANG A, SUN L M, WANG X S, et al. Intrusion detection techniques for industrial control systems[J]. Journal of Computer Research and Development, 2016, 53(9): 2039-2054. doi: 10.7544/issn.1000-1239.2016.20150465. 趙婧, 魏彬, 羅鵬, 等. 基于隱馬爾可夫模型的入侵檢測方法[J]. 四川大學學報, 2016, 16(1): 106-110. doi: 10.15961/ j.jsuese.2016.01.016. ZHAO J, WEI B, LUO P, et al. Intrusion detection method based on hidden Markov model[J]. Journal of Sichuan University, 2016, 16(1): 106-110. doi: 10.15961 /j.jsuese.2016. 01.016. KOLIAS C, KOLIAS V, and KAMBOURAKIS G. TermID: A distributed swarm intelligence-based approach for wireless intrusion detection[J]. International Journal of Information Security, 2016, 21(6): 1-16. doi: 10.1007/s10207-016-0335-z. YU Q, LYU J, JIANG L, et al. Traffic anomaly detection algorithm for wireless sensor networks based on improved exploitation of the GM (1, 1) model[J]. International Journal of Distributed Sensor Networks, 2016, 12(7): 218-227. doi: 10.1177/155014772181256. PATEL A, ALHUSSIAN H, PEDERSEN J M, et al. A nifty collaborative intrusion detection and prevention architecture for Smart Grid ecosystems[J]. Computers Security, 2017, 64(2): 92-109. doi: 10.1016/j.cose.2016.07.002. KALNOOR G, AGARKHED J, and PATIL S R. Agent- based QoS routing for intrusion detection of sinkhole attack in clustered wireless sensor networks[C]. The First International Conference on Computational Intelligence and Informatics, Hyderabad, India, 2017: 571-583. doi: 10.1007/ 978-981-10-2471-9_55. WANG X Y, YANG L Z, and CHEN K F. Sleach: secure low-energy adaptive clustering hierarchy protocol for wireless sensor networks[J]. Wuhan University Journal of Natural Sciences, 2005, 10(1): 127-131. doi: 10.1007/BF02828633. FOROOTANINIA A and GHAZNAVI M B. An improved watchdog technique based on power-aware hierarchical design for ids in wireless sensor networks[J]. International Journal of Network Security, 2012, 4(4): 161-178. doi: 10.5121/ijnsa. 2012.4411. DOUMIT S S and AGRAWAL D P. Self-organized criticality and stochastic learning based intrusion detection system for wireless sensor networks[C]. Military Communications Conference, Alexandria, USA, 2003: 609-614. doi: 10.1109/ MILCOM.2003.1290173. XIAO Z H, CHEN Z G, and DENG X H. Anomaly detection based on a multi-class CUSUM algorithm for WSN[J]. Journal of Computers, 2010, 5(2): 306-313. doi: 10.4304/jcp. 5.2.306-313. JOKAR P and LEUNG V. Intrusion detection and prevention for ZigBee-based home area networks in smart grids[J]. IEEE Transaction on Smart Grid, 2016, 15(3): 1-12. doi: 10.1109/TSG.2016.2600585. MOOSAVI H and BUI F M. A game-theoretic framework for robust optimal intrusion detection in wireless sensor networks[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(9): 1367-1379. doi: 10.1109/TIFS.2014. 2332816. -
計量
- 文章訪問數(shù): 1241
- HTML全文瀏覽量: 166
- PDF下載量: 167
- 被引次數(shù): 0