一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

空間目標卡爾曼濾波稀疏成像方法

汪玲 朱棟強 馬凱莉 肖卓

汪玲, 朱棟強, 馬凱莉, 肖卓. 空間目標卡爾曼濾波稀疏成像方法[J]. 電子與信息學(xué)報, 2018, 40(4): 846-852. doi: 10.11999/JEIT170319
引用本文: 汪玲, 朱棟強, 馬凱莉, 肖卓. 空間目標卡爾曼濾波稀疏成像方法[J]. 電子與信息學(xué)報, 2018, 40(4): 846-852. doi: 10.11999/JEIT170319
WANG Ling, ZHU Dongqiang, MA Kaili, XIAO Zhuo. Sparse Imaging of Space Targets Using Kalman Filter[J]. Journal of Electronics & Information Technology, 2018, 40(4): 846-852. doi: 10.11999/JEIT170319
Citation: WANG Ling, ZHU Dongqiang, MA Kaili, XIAO Zhuo. Sparse Imaging of Space Targets Using Kalman Filter[J]. Journal of Electronics & Information Technology, 2018, 40(4): 846-852. doi: 10.11999/JEIT170319

空間目標卡爾曼濾波稀疏成像方法

doi: 10.11999/JEIT170319 cstr: 32379.14.JEIT170319
基金項目: 

總裝實驗技術(shù)研究項目(2015SY26A0003),南京航空航天大學(xué)研究生創(chuàng)新基地(實驗室)開放基金(kfjj20170407),中央高?;究蒲袠I(yè)務(wù)費專項資金

Sparse Imaging of Space Targets Using Kalman Filter

Funds: 

The Assembly Test Technology Research Project (2015SY26A0003), The Foundation of Graduate Innovation Center in NUAA (kfjj20170407), The Fundamental Research Funds for the Central Universities

  • 摘要: 鑒于卡爾曼濾波器(KF)具有優(yōu)良的信號估計性能,將KF與貪婪算法相結(jié)合,該文給出稀疏約束下的基于KF的空間目標逆合成孔徑雷達(ISAR)成像方法??紤]到有些空間目標尺寸較大或包含大尺寸部件,或成像積累時間較長,會引入越分辨單元走動(MTRC)和方位向2次相位調(diào)制,首先對回波進行MTRC校正,然后構(gòu)建包含2次相位的觀測矩陣,通過使圖像銳度最大化,估計目標轉(zhuǎn)動角速度,獲得聚焦目標圖像,并將估計轉(zhuǎn)速用于方位向圖像定標。衛(wèi)星仿真ISAR數(shù)據(jù)處理驗證了上述成像處理方法的有效性。成像效果優(yōu)于傳統(tǒng)距離多普勒(RD)和正交匹配追蹤(OMP)方法。
  • PRICKETT M J and CHEN C C. Principles of inverse synthetic aperture radar ISAR imaging[C]. EASCON,80; Electronics and Aerospace Systems Conference, New York, USA, 1980: 340-345.
    LI G, HOU Q, XU S, et al. Multi-target simultaneous ISAR imaging based on compressed sensing[J]. EURASIP Journal on Advances in Signal Processing, 2016, (1): 1-11. doi: 10.1186/s13634-016-0327-1.
    REN X, QIAO L, QIN Y, et al. Sparse regularization based imaging method for inverse synthetic aperture radar[C]. Progress in Electromagnetics Research Symposium, Guangzhou, China, 2016: 4348-4351. doi: 10.1109/PIERS. 2016.7735622.
    HU X, TONG N, DING S, et al. ISAR imaging with sparse stepped frequency waveforms via matrix completion[J]. Remote Sensing Letters, 2016, 7(9): 847-854. doi: 10.1080/ 2150704X.2016.1192699.
    蘇伍各, 王宏強, 鄧彬, 等. 基于方差成分擴張壓縮的稀疏貝葉斯ISAR成像方法[J]. 電子與信息學(xué)報, 2014, 36(7): 1525-1531. doi: 10.3724/SP.J.1146.2013.01338.
    SU Wuge, WANG Hongqiang, DENG Bin, et al. Sparse bayesian representation of the ISAR imaging method based on ExCoV[J]. Journal of Electronics Information Technology, 2014, 36(7): 1525-1531. doi: 10.3724/SP.J.1146. 2013.01338.
    RAO W, LI G, WANG X, et al. Parametric sparse representation method for ISAR imaging of rotating targets [J]. IEEE Transactions on Aerospace Electronic Systems, 2014, 50(2): 910-919. doi: 10.1109/TAES.2014.120535.
    TOMEI S, BACCI A, GIUSTI E, et al. Compressive sensing- based inverse synthetic radar imaging from incomplete data[J]. IET Radar, Sonar Navigation, 2016, 10(2): 386-397. doi: 10.1049/iet-rsn.2015.0290.
    ZHANG L, XING M D, and QIU C W. Resolution enhancement for ISAR imaging under low SNR via improved statistical compressive sensing[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48 (10): 3824-3838. doi: 10.1109/TGRS.2010.2048575.
    BACCI A, GIUSTI E, CATALDO D, et al. ISAR resolution enhancement via compressive sensing: A comparison with state of the art SR techniques[C]. International Workshop on Compressed Sensing Theory and ITS Applications to Radar, Sonar and Remote Sensing. Aachen, Germany, 2016: 227-231. doi: 10.1109/CoSeRa.2016.7745734.
    吳敏, 邢孟道, 張磊. 基于壓縮感知的二維聯(lián)合超分辨ISAR成像算法[J]. 電子與信息學(xué)報, 2014, 36(1): 187-193. doi: 10.3724/SP.J.1146.2012.01597
    WU Min, XING Mengdao, and ZHANG Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193. doi: 10.3724/ SP.J.1146.2012.01597.
    VASWANI N. Kalman filtered compressed sensing[C]. IEEE International Conference on Image Processing, California, USA, 2008: 893-896. doi: 10.1109/ICIP.2008.4711899.
    WANG L and LOFFELD O. ISAR imaging using a null space -1 minimizing Kalman filter approach[C]. International Workshop on Compressed Sensing Theory Its Applications to Radar, Aachen, Germany, 2016: 232-236. doi: 10.1109/ CoSeRa.2016.7745735.
    APRILE A, MAURI A, and PASTINA D. Real time rotational motion compensation algorithm for focusing spot- SAR/ISAR images in case of variable rotation-rate[C]. European Radar Conference, Amsterdam, The Netherlands, 2004: 141-144.
    李源. 逆合成孔徑雷達理論與對抗[M]. 北京: 國防工業(yè)出版社, 2013: 139-142.
    LI Yuan. Theory and Countermeasure of Inverse Synthetic Aperture Radar[M]. Beijing: National Defence Industry Press, 2013: 139-142.
    BACCI A, GIUSTI E, CATALDO D, et al. ISAR resolution enhancement via compressive sensing: A comparison with state of the art SR techniques[C]. International Workshop on Compressed Sensing Theory Its Applications to Radar, Aachen, Germany, 2016: 227-231. doi: 10.1109/CoSeRa.2016. 7745734.
    汪玲. ISAR運動補償技術(shù)研究[D]. [碩士論文], 南京航空航天大學(xué), 2003: 28-35.
    WANG Ling. Study on ISAR motion compensation[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2003: 28-35.
  • 加載中
計量
  • 文章訪問數(shù):  1448
  • HTML全文瀏覽量:  180
  • PDF下載量:  299
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-04-11
  • 修回日期:  2018-01-19
  • 刊出日期:  2018-04-19

目錄

    /

    返回文章
    返回