空間目標卡爾曼濾波稀疏成像方法
doi: 10.11999/JEIT170319 cstr: 32379.14.JEIT170319
-
2.
(南京航空航天大學(xué)雷達成像與微波光子技術(shù)教育部重點實驗室 南京 210016)
總裝實驗技術(shù)研究項目(2015SY26A0003),南京航空航天大學(xué)研究生創(chuàng)新基地(實驗室)開放基金(kfjj20170407),中央高?;究蒲袠I(yè)務(wù)費專項資金
Sparse Imaging of Space Targets Using Kalman Filter
-
1.
(Key Laboratory of Radar Imaging and Microwave Photonics of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
-
2.
(Key Laboratory of Radar Imaging and Microwave Photonics of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
The Assembly Test Technology Research Project (2015SY26A0003), The Foundation of Graduate Innovation Center in NUAA (kfjj20170407), The Fundamental Research Funds for the Central Universities
-
摘要: 鑒于卡爾曼濾波器(KF)具有優(yōu)良的信號估計性能,將KF與貪婪算法相結(jié)合,該文給出稀疏約束下的基于KF的空間目標逆合成孔徑雷達(ISAR)成像方法??紤]到有些空間目標尺寸較大或包含大尺寸部件,或成像積累時間較長,會引入越分辨單元走動(MTRC)和方位向2次相位調(diào)制,首先對回波進行MTRC校正,然后構(gòu)建包含2次相位的觀測矩陣,通過使圖像銳度最大化,估計目標轉(zhuǎn)動角速度,獲得聚焦目標圖像,并將估計轉(zhuǎn)速用于方位向圖像定標。衛(wèi)星仿真ISAR數(shù)據(jù)處理驗證了上述成像處理方法的有效性。成像效果優(yōu)于傳統(tǒng)距離多普勒(RD)和正交匹配追蹤(OMP)方法。Abstract: In view of the excellent signal estimation performance of the Kalman Filter (KF), combining the KF algorithm with the greedy algorithm and an imaging method is presented for Inverse Synthetic Aperture Radar (ISAR) using KF with sparse constraints. Large space targets including the targets having large-size components and long imaging time may introduce the Migration Through Resolution Cell (MTRC) and quadratic phase modulation in the cross-range. The MTRC correction is firstly performed. Then, the observation matrix is constructed by including the quadratic phase term. By maximizing the image sharpness, an estimation of the target angular velocity as well as a well-focused image can be obtained. The estimated angular velocity can be further used for image cross-range scaling. The processing of the simulated satellite ISAR data verifies the effectiveness of the presented imaging processing method. The image quality is superior to the traditional Range Doppler (RD) method and Orthogonal Matching Pursuit (OMP) method.
-
Key words:
- ISAR imaging /
- Kalman filter /
- Sparse recovery /
- Scaling
-
PRICKETT M J and CHEN C C. Principles of inverse synthetic aperture radar ISAR imaging[C]. EASCON,80; Electronics and Aerospace Systems Conference, New York, USA, 1980: 340-345. LI G, HOU Q, XU S, et al. Multi-target simultaneous ISAR imaging based on compressed sensing[J]. EURASIP Journal on Advances in Signal Processing, 2016, (1): 1-11. doi: 10.1186/s13634-016-0327-1. REN X, QIAO L, QIN Y, et al. Sparse regularization based imaging method for inverse synthetic aperture radar[C]. Progress in Electromagnetics Research Symposium, Guangzhou, China, 2016: 4348-4351. doi: 10.1109/PIERS. 2016.7735622. HU X, TONG N, DING S, et al. ISAR imaging with sparse stepped frequency waveforms via matrix completion[J]. Remote Sensing Letters, 2016, 7(9): 847-854. doi: 10.1080/ 2150704X.2016.1192699. 蘇伍各, 王宏強, 鄧彬, 等. 基于方差成分擴張壓縮的稀疏貝葉斯ISAR成像方法[J]. 電子與信息學(xué)報, 2014, 36(7): 1525-1531. doi: 10.3724/SP.J.1146.2013.01338. SU Wuge, WANG Hongqiang, DENG Bin, et al. Sparse bayesian representation of the ISAR imaging method based on ExCoV[J]. Journal of Electronics Information Technology, 2014, 36(7): 1525-1531. doi: 10.3724/SP.J.1146. 2013.01338. RAO W, LI G, WANG X, et al. Parametric sparse representation method for ISAR imaging of rotating targets [J]. IEEE Transactions on Aerospace Electronic Systems, 2014, 50(2): 910-919. doi: 10.1109/TAES.2014.120535. TOMEI S, BACCI A, GIUSTI E, et al. Compressive sensing- based inverse synthetic radar imaging from incomplete data[J]. IET Radar, Sonar Navigation, 2016, 10(2): 386-397. doi: 10.1049/iet-rsn.2015.0290. ZHANG L, XING M D, and QIU C W. Resolution enhancement for ISAR imaging under low SNR via improved statistical compressive sensing[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48 (10): 3824-3838. doi: 10.1109/TGRS.2010.2048575. BACCI A, GIUSTI E, CATALDO D, et al. ISAR resolution enhancement via compressive sensing: A comparison with state of the art SR techniques[C]. International Workshop on Compressed Sensing Theory and ITS Applications to Radar, Sonar and Remote Sensing. Aachen, Germany, 2016: 227-231. doi: 10.1109/CoSeRa.2016.7745734. 吳敏, 邢孟道, 張磊. 基于壓縮感知的二維聯(lián)合超分辨ISAR成像算法[J]. 電子與信息學(xué)報, 2014, 36(1): 187-193. doi: 10.3724/SP.J.1146.2012.01597 WU Min, XING Mengdao, and ZHANG Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193. doi: 10.3724/ SP.J.1146.2012.01597. VASWANI N. Kalman filtered compressed sensing[C]. IEEE International Conference on Image Processing, California, USA, 2008: 893-896. doi: 10.1109/ICIP.2008.4711899. WANG L and LOFFELD O. ISAR imaging using a null space -1 minimizing Kalman filter approach[C]. International Workshop on Compressed Sensing Theory Its Applications to Radar, Aachen, Germany, 2016: 232-236. doi: 10.1109/ CoSeRa.2016.7745735. APRILE A, MAURI A, and PASTINA D. Real time rotational motion compensation algorithm for focusing spot- SAR/ISAR images in case of variable rotation-rate[C]. European Radar Conference, Amsterdam, The Netherlands, 2004: 141-144. 李源. 逆合成孔徑雷達理論與對抗[M]. 北京: 國防工業(yè)出版社, 2013: 139-142. LI Yuan. Theory and Countermeasure of Inverse Synthetic Aperture Radar[M]. Beijing: National Defence Industry Press, 2013: 139-142. BACCI A, GIUSTI E, CATALDO D, et al. ISAR resolution enhancement via compressive sensing: A comparison with state of the art SR techniques[C]. International Workshop on Compressed Sensing Theory Its Applications to Radar, Aachen, Germany, 2016: 227-231. doi: 10.1109/CoSeRa.2016. 7745734. 汪玲. ISAR運動補償技術(shù)研究[D]. [碩士論文], 南京航空航天大學(xué), 2003: 28-35. WANG Ling. Study on ISAR motion compensation[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2003: 28-35. -
計量
- 文章訪問數(shù): 1448
- HTML全文瀏覽量: 180
- PDF下載量: 299
- 被引次數(shù): 0