基于物理模型與邊界約束的低照度圖像增強(qiáng)算法
doi: 10.11999/JEIT170267 cstr: 32379.14.JEIT170267
國(guó)家自然科學(xué)基金(60975008),重慶市研究生科研創(chuàng)新項(xiàng)目(CYS17235)
Enhancement Algorithm for Low-lighting Images Based on Physical Model and Boundary Constraint
-
(Key Laboratory of Industrial Internet of Things and Network Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)
The National Natural Science Foundation of China (60975008), Chongqing Graduate Student Science Research Innovation Foundation (CYS17235)
-
摘要: 針對(duì)低照度下圖像降質(zhì)嚴(yán)重的問題,該文提出一種基于邊界約束與圖像亮度的低照度圖像增強(qiáng)算法。該算法首先通過改進(jìn)的邊界約束對(duì)偽霧圖進(jìn)行透射率估計(jì),并對(duì)其進(jìn)行優(yōu)化;同時(shí)從偽霧圖霧的形成原理出發(fā),利用低照度圖像的亮度分量進(jìn)行偽霧圖大氣光值的估計(jì);最后將增強(qiáng)后的偽霧圖反轉(zhuǎn),即得到增強(qiáng)后的低照度圖像。實(shí)驗(yàn)結(jié)果表明,針對(duì)低照度下的圖像,該算法可以有效地提升對(duì)比度和亮度,過增強(qiáng)現(xiàn)象得到改善;效果優(yōu)于對(duì)比算法,且復(fù)雜度低。
-
關(guān)鍵詞:
- 低照度圖像增強(qiáng) /
- 偽霧圖 /
- 邊界約束 /
- 物理模型
Abstract: The aim of this paper is to achieve a low-lighting image enhancement method by using the similarity between fog image and inverted low illumination image. The transmittance estimation of the pseudo-fog image is estimated by the improved boundary constraint, and then it is optimized. Based on the formation principle of pseudo fog, the light intensity of pseudo fog map is estimated by using the brightness component of low illumination image. The enhanced pseudo fog image is reversed to obtain the enhanced low illumination image. Extensive experimental results using natural low-lighting images indicate that the proposed method perform better than contemporary algorithms in terms of several metrics, including the intensity, the contrast. The proposed algorithm can effectively suppress the wrong phenomenon caused by enhanced with low complexity.-
Key words:
- Low-lighting image enhancement /
- Pseudo-fog image /
- Boundary constraint /
- Physical model
-
田暢, 姜青竹, 吳澤民, 等. 基于區(qū)域協(xié)方差的視頻顯著度局部空時(shí)優(yōu)化模型[J]. 電子與信息學(xué)報(bào), 2016, 38(7): 1586-1593. doi: 10.11999/JEIT151122. TIAN Chang, JIANG Qingzhu, WU Zemin, et al. A local spatiotemporal optimizationframework for video saliency detection using region covariance[J]. Journal of Electronics Information Technology, 2016, 38(7): 1586-1593. doi: 10.11999/JEIT151122. 王超, 王浩, 王偉, 等. 基于優(yōu)化 ROI 的醫(yī)學(xué)圖像分割與壓縮方法研究[J]. 重慶郵電大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 27(2): 279-284. doi: 10.3979/j.issn.1673-825X.2015.02.025. WANG Chao, WANG Hao, WANG Wei, et al. Study of optimized ROI based medical image segmentation and compression method[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(2): 279-284. doi: 10.3979/j.issn.1673-825X.2015.02. 025. 楊愛萍, 張莉云, 曲暢, 等. 基于加權(quán)L1正則化的水下圖像清晰化算法[J]. 電子與信息學(xué)報(bào), 2017, 39(3): 626-633. doi: 10.11999/JEIT160481. YANG Aiping, ZHANG Liyun, QU Chang, et al. Underwater images visibility improving algorithm with weighted L1 regularization[J]. Journal of Electronics Information Technology, 2017, 39(3): 626-633. doi: 10.11999/JEIT160481. 何林遠(yuǎn), 畢篤彥, 熊磊, 等. 基于亮度反饋的彩色霧霾圖像增強(qiáng)算法[J]. 電子學(xué)報(bào), 2015, 43(10): 1978-1983. doi: 10.3969/j. issn.0372-2112.2015.10.015. HE Linyuan, BI Duyan, XIONG Lei, et al. Color image haze removal algorithm based on luminance feedback[J]. Acta Electronica Sinica, 2015, 43(10): 1978-1983. doi: 10.3969/ j.issn.0372-2112.2015.10.015. 戚曹, 朱桂斌, 陽溢, 等. 基于局部自相似性的視頻圖像超分辨率算法[J]. 重慶郵電大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 27(5): 692-699. doi: 10.3979/j.issn.1673-825X.2015.05.019. QI Cao, ZHU Guibin, YANG Yi, et al. Local self-examples based video images super-resolution algorithm[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(5): 692-699. doi: 10.3979/ j.issn.1673-825X.2015.05.019. MUKHERJEE J and MITRA S K. Enhancement of color images by scaling the DCT coefficients[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1783-1794. doi: 10.1109/ TIP.2008.2002826. ZHOU Z, SANG N, and HU X. Global brightness and local contrast adaptive enhancement for low illumination color image[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(6): 1795-1799. doi: 10.1016/j.ijleo.2013.09. 051. SELESNICK I W, BARANIUK R G, and KINGSBURY N G. The dual-tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 2005, 22(6): 123-151. doi: 10.1109/MSP. 2005.1550194. 李慶忠, 劉清. 基于小波變換的低照度圖像自適應(yīng)增強(qiáng)算法[J]. 中國(guó)激光, 2015, 42(2): 272-278. doi: 10.3788/cjl201542. 0209001. LI Qingzhong and LIU Qing. Adaptive enhancement algorithm for low illumination images based on wavelet transform[J]. Chinese Journal of Lasers, 2015, 42(2): 272-278. doi: 10.3788/cjl201542.0209001. CHANG Y C and CHANG C M. A simple histogram modification scheme for contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2010, 56(2): 737-742. doi: 10.1109/TCE.2010.5505995. JOBSON D J, RAHMAN Z, and WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976. doi: 10.1109/83. 597272. LAND E H. The retinex theory of color vision[J]. Scientific America, 1977, 237(6): 108-128. doi: 10.1038/ scientificamer- ican1277-108. XU K and JUNG C. Retinex-based perceptual contrast enhancement in images using luminance adaptation[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017: 1363-1367. doi: 10.1109/ ICASSP.2017.7952379. DONG X, WANG G, PANG Y, et al. Fast efficient algorithm for enhancement of low lighting video[C]. IEEE International Conference on Multimedia and Expo, Barcelona, 2011: 1-6. doi: 10.1109/ICME.2011.6012107. HE K, SUN J, and TANG X. Guided Image Filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. doi: 10.1109/TPAMI. 2012.213. NARASIMHAN S G and NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724. doi: 10.1109/TPAMI.2003.1201821. MENG G, WANG Y, DUAN J, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]. IEEE International Conference on Computer Vision, Sydney, 2013: 617-624. doi: 10.1109/ ICCV.2013.82. CHEN Y, XIAO X, LIU H L, et al. Dynamic color image resolution compensation under low light[J]. Optik- International Journal for Light and Electron Optics, 2015, 126(6): 603-608. doi: 10.1016/j.ijleo.2015.01.032. GASTAL E S L and OLIVEIRA M M. Domain transform for edge-aware image and video processing[J]. ACM Transactions on Graphics, 2011, 30(4): 1244-1259. doi: 10.1145/1964921. 1964964. 陳勇, 李愿, 呂霞付, 等. 視覺感知的彩色圖像質(zhì)量積極評(píng)價(jià)方法[J]. 光學(xué)精密工程, 2013, 21(3): 742-750. doi: 10.3788/ OPE.20132103.0742. CHEN Yong, LI Yuan, L? Xiafu, et al. Active assessment of color image quality based on visual perception[J]. Optics and Precision Engineering, 2013, 21(3): 742-750. doi: 10.3788/ OPE.20132103.0742. -
計(jì)量
- 文章訪問數(shù): 1291
- HTML全文瀏覽量: 164
- PDF下載量: 307
- 被引次數(shù): 0