基于滑窗和原子字典的壓縮域跳頻信號參數(shù)估計算法
doi: 10.11999/JEIT170084 cstr: 32379.14.JEIT170084
基金項目:
國家自然科學基金(61201134),高等學校學科引智計劃(B08038)
Parameter Estimation Algorithm for Frequency-hopping Signal in Compressed Domain Based on Sliding Window and Atomic Dictionary
Funds:
The National Natural Science Foundation of China (61201134), 111 Project (B08038)
-
摘要: 現(xiàn)有跳頻信號參數(shù)估計算法大多沒有考慮跳頻信號的結(jié)構(gòu)特性,在低信噪比下存在計算復雜度高或估計精度低的缺點,針對這一問題,該文提出一種基于滑窗和原子字典的壓縮域跳頻信號參數(shù)估計算法。用滑窗法對所處理的跳頻信號進行整周期滑動壓縮采樣,粗略估計出跳頻信號的跳變時刻,以塊對角化的傅里葉正交基作為稀疏基精確估計出跳變前后的頻率,在此基礎(chǔ)上構(gòu)建可以表示跳頻信號局部時頻特性的原子字典,通過匹配追蹤算法準確估計出跳頻信號的跳變時刻。實驗結(jié)果表明,該算法在顯著降低信號采樣數(shù)據(jù)量和計算復雜度的同時,保持了跳頻信號參數(shù)的高精度估計。Abstract: Most existing parameter estimation algorithms for Frequency Hopping (FH) signal do not consider the structural characteristics of FH signals, and have the disadvantages of high computational complexity or low estimation accuracy in low signal-to-noise ratio circumstance. To solve this problem, this paper proposes a parameter estimation algorithm for frequency hopping signal in compressed domain based on sliding window and atomic dictionary. The frequency hopping signal is acquired by sliding compression sampling, and hopping time is roughly estimated with sliding window method. The Fourier orthogonal basis of block diagonalization is used as sparse basis to estimate the frequency of the signal. An atomic dictionary, which can represent the local time-frequency characteristics of the frequency hopping signal, is constructed based on the estimated frequency and rough hopping time. Then the hopping time can be estimated accurately by the matching pursuit algorithm. Simulation results show that this algorithm can significantly reduce the sampling data and computational complexity, while maintaining the high accuracy estimation.
-
TORRIERI D J. Mobile frequency-hopping CDMA system [J]. IEEE Transactions on Communications, 2000, 48(8): 1318-1327. doi: 10.1109/26.864169. AMIN M G. Interference mitigation in spread spectrum communication systems using time-frequency distributions[J]. IEEE Transactions on Signal Processing, 1997, 45(1): 90-101. doi: 10.1109/78.552208. 趙俊, 張朝陽, 賴利峰, 等. 一種基于時頻分析的跳頻信號參數(shù)盲估計方法[J]. 電路與系統(tǒng)學報, 2003, 8(3): 46-50. doi: 10.3969/j.issn.1007-0249.2003.03.011. ZHAO Jun, ZHANG Chaoyang, LAI Lifeng, et al. Blind parameter estimation of frequency-hopping signals based on time-frequency analysis[J]. Journal of Circuits and Systems, 2003, 8(3): 46-50. doi: 10.3969/j.issn.1007-0249.2003.03.011. BSRBAROSSA S and SCAGLIONE A. Parameter estimation of spread spectrum frequency hopping signals using time-frequency distributions[C]. Signal Processing Advances in Wireless Communications of First Signal Processing Workshop, Paris, France, 1997: 213-216. ANGELOSANTE D and GIANNAKIS G B. Estimating multiple frequency-hopping signal parameters via sparse linear regression[J]. IEEE Transations on Signal Processing, 2010, 58(10): 5044-5056. doi: 10.1109/TSP.2010. 2052614. 呂晨杰, 王斌, 唐濤. 采用局部特征尺度分解的跳頻信號參數(shù)盲估計算法[J]. 信號處理, 2015, 31(3): 308-313. doi: 10.3969/ j.issn.1003-0530.2015.03.008. L Chenjie, WANG Bin, and TANG Tao. Blind parameter estimation of frequency hopping signal using local characteristic-scale decomposition[J]. Journal of Signal Processing, 2015, 31(3): 308-313. doi: 10.3969/j.issn.1003- 0530.2005.03.008. 范海寧, 郭英. 一種新的跳頻信號參數(shù)盲估計算法[J]. 信號處理, 2009, 25(11): 1754-1758. doi: 10.3969/j.issn.1003-0530. 2009.11.017. FAN Haining and GUO Ying. A novel blind parameter estimation algorithm of frequency-hoppig signals[J]. Signal Processing, 2009, 25(11): 1754-1758. doi: 10.3969/j.issn.1003- 0530.2009.11.017. HUANG Anmin, GUAN Gui, MEHBODNIYA A, et al. A block orthogonal matching pursuit algorithm based on sensing dictionary[J]. International Journal of the Physical Sciences, 2011, 6(5): 992-999. doi: 10.5897/ IJPS11.171. 范海寧, 郭英, 艾宇. 基于原子分解的跳頻信號盲檢測和參數(shù)盲估計算法[J]. 信號處理, 2010, 26(5): 695-702. doi: 10.3969/ j.issn.1003-0530.2010.05.010. FAN Haining, GUO Ying, and AI Yu. Blind detection and parameter estimation algorithm based on atomic decomposition[J]. Signal Processing, 2010, 26(5): 695-702. doi: 10.3969/j.issn.1003-0530.2010.05.010. CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083. CANDES E J and TAO T. Near-optimal signal recovery from random projections:universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. doi: 10.1109/TIT.2006.885507. RICHARD G, CANDES E, ROBERT N, et al. Compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 12-13. doi: 10/1109/MSP.2008.915557. 張春磊, 李立春, 王大鳴. 壓縮域?qū)拵l信號跳變時刻估計算法[J]. 太赫茲科學與電子信息學報, 2015, 13(1): 122-129. doi: 10.11805/TKYDA201501.0122. ZHANG Chunlei, LI Lichun, and WANG Daming. A hopping transition time estimation algorithm for wide-band frequency-hopping signal in compressed domain[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(1): 122-128. doi: 10.11805/TKYDA2015.0122. ZHAO Lifan, WANG Lu, BI Guoan, et al. Robust frequency- hopping spectrum estimation based on sparse Bayesian method[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 781-793. doi: 10.1109/ TWC.2014.2360191. 陳瑩, 鐘菲, 郭樹旭. 非合作跳頻信號參數(shù)的盲壓縮感知估計[J]. 雷達學報, 2016, 5(5): 531-537. doi: 10.12000/JR15106. CHEN Ying, ZHONG Fei, and GUO Shuxu. Blind compressed sensing parameter estimation of non-cooperative frequency hopping signal[J]. Journal of Radars, 2016, 5(5): 531-537. doi: 10.12000/JR15106. WANG Lixin, ZHANG Binze, and ZHAO Yizhi. Compressive sampling and rapid reconstruction of broadband frequency hopping signals with interference[J]. Circuits, Systems, and Signal Processing, 2015, 34(5): 1535-1547. doi: 10.1007/ s00034-014-9912-4. -
計量
- 文章訪問數(shù): 1171
- HTML全文瀏覽量: 131
- PDF下載量: 230
- 被引次數(shù): 0