基于格基約減的擴(kuò)頻通信多址干擾抑制算法
doi: 10.11999/JEIT161104 cstr: 32379.14.JEIT161104
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(91638203),國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFB0502102)
Lattice Reduction Aided Multiple Access Interference Cancellation Algorithm of Spread Spectrum Communication
Funds:
The National Natural Science Foundation of China (91638203), The National Key Research and Development Program (2016YFB0502102)
-
摘要: 在鏈路資源受限條件下的擴(kuò)頻通信應(yīng)用中,多址干擾是限制系統(tǒng)多用戶(hù)服務(wù)能力和通信質(zhì)量的主要因素。該文針對(duì)多址干擾消除問(wèn)題,首次將格基約減理論應(yīng)用到擴(kuò)頻通信多址干擾消除中,提出基于格基約減輔助的多用戶(hù)檢測(cè)算法,通過(guò)格基約減變換實(shí)現(xiàn)對(duì)信號(hào)間互相關(guān)矩陣的正交性?xún)?yōu)化,使多用戶(hù)檢測(cè)算法性能得到改進(jìn),以較低的運(yùn)算復(fù)雜度實(shí)現(xiàn)了逼近最大似然算法的檢測(cè)性能。該算法在對(duì)抗強(qiáng)遠(yuǎn)近效應(yīng)方面表現(xiàn)出優(yōu)異性能,不同于傳統(tǒng)多用戶(hù)檢測(cè)算法在惡劣多址環(huán)境下檢測(cè)性能的嚴(yán)重退化,該算法能夠保持對(duì)最大似然檢測(cè)算法性能的逼近,可以使擴(kuò)頻通信系統(tǒng)的傳輸可靠性、多用戶(hù)服務(wù)能力以及環(huán)境適應(yīng)性得到顯著增強(qiáng)。
-
關(guān)鍵詞:
- 擴(kuò)頻通信 /
- 多址干擾 /
- 多用戶(hù)檢測(cè) /
- 格基約減 /
- 遠(yuǎn)近效應(yīng)
Abstract: In the application of spread spectrum communication with limited wireless resource, Multiple Access Interference (MAI) is the main restraint element of the multiple user service capability and communication performance. Focusing on the MAI problem, lattice reduction theory is firstly applied to the MAI cancellation of spread spectrum communication. A lattice reduction aided multiple user detection method is proposed. With lattice reduction method, the orthogonality of the correlation matrix of multiple signals is improved. As a result, the error bit rate of Multiple User Detection (MUD) method is reduced, and near ML demodulation performance is reached with low complexity. High performance on near-far effect resistance is achieved with the algorithm. Contrary to the performance degradation of traditional MUD method in serious MAI scenario, lattice reduction aided multiple user detection method can maintain near ML performance. Transmission reliability, multiuser service capability and environment suitability of spread spectrum system can be improved remarkably with the algorithm. -
ABDELAAL R, ELSAYED K F, and ISMAIL M. Optimized joint power and resource allocation for coordinated multi-point transmission for multi-user LTE-Advanced systems[J]. Wireless Personal Communications, 2015, 83(4): 1-22. doi: 10.1007/s11277-015-2543-7. BOTELLA C, ERO G, and DIEGO M. Multi-user interference mitigation under limited feedback requirements for WCDMA systems with base station cooperation[J]. Telecommunication Systems, 2016, 61(3): 543-557. doi: 10.1007/s11235-015-0011-z. HOU Y, LI M, and YUAN X. Cooperative interference mitigation for heterogeneous Multi-Hop wireless networks coexistence[J]. IEEE Transactions on Wireless Communications, 2016, 15(8): 5328-5340. doi: 10.1109/TWC. 2016.2555953. ZHOU Qi and MA Xiaoli. Receiver designs for differential UWB systems with multiple access interference[J]. IEEE Transactions on Communications, 2014, 62(1): 126-134. doi: 10.1109/ICUWB.2011.6058828. ARNAU J, DEVILLERS B, MOSQUERA C, et al. Performance study of multiuser interference mitigation schemes for hybrid broadband multibeam satellite architectures[J]. EURASIP Journal on Wireless Communications Networking, 2012: 132. doi: 10.1186/ 1687-1499-2012-132. KECHRIOTIES G I and MANOLAKOS E S. Hopfield neural network implementation of the optimal CDMA multiuser detector[J]. IEEE Transactions on Communications, 1996, 44(4): 496-507. doi: 10.1109/72.478397. 史雙寧, 尚勇, 梁慶林. 一種新的線性多用戶(hù)檢測(cè)器[J]. 電子學(xué)報(bào), 2007, 35(3): 426-429. doi: 10.3321/j.issn:0372-2112. 2007.03.008. SHI Shuangning, SHANG Yong, and LIANG Qinglin. A novel linear multi-user detector[J]. Acta Electronica Sinica, 2007, 35(3): 426-429. doi: 10.3321/j.issn:0372-2112.2007.03.008. YU Y, LI J, and WANG Z. Blind multiuser detection in MC-CDMA: Schmidt-orthogonalization and subspace tracking kalman filtering[C]. 3rd International Conference on Communications and Mobile Computing, Qingdao, 2011: 375-380. doi: 10.1109/CMC.2011.50. XIE Z, SHORT R T, and RUSHFORTH C K. A family of suboptimum detectors for coherent multiuser communications[J]. IEEE Journal on Selected Areas in Communications, 1990, 8(4): 683-690. doi: 10.1109/49.54464. ZHENG W, LI J, LUO Y, et al. Multi-user interference pre-cancellation for downlink signals of multi-beam satellite system[C]. International Conference on Consumer Electronics, Communications and Networks, Xianning, 2013: 415-418. doi: 10.1109/CECNet.2013.6703358. BAO Yachuan and YU Baoguo. A MAI cancellation algorithm with near ML performance[C]. 2015 IEEE International Conference on Communication Software and Networks (ICCSN), Chengdu, 2015: 196-200. doi: 10.1109/ ICCSN.2015.7296153. BREMNER M R. Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications[M]. Boca Raton, FL, USA, CRC Press, Inc., 2011: 55-62. DIAS S M and VIEIRA N J. Concept lattices reduction: Definition, analysis and classification[J]. Expert Systems with Applications, 2015, 42(20): 7084-7097. doi: 10.1016/j.eswa. 2015.04.044. LAMACCHIA B A. Basis reduction algorithms and subset sum problems[D]. [Master dissertation], Massachusetts Inst Technology, 1991. LENSTRA A K, LENSTRA H W, and LOVASZ L. Factoring polynomials with rational coefficients[J]. Mathematische Annalen, 1982, 261(4): 515-534. doi: 10.1007/BF01457454. NGUYEN P Q and STERN J. Lattice reduction in cryptology: An update[C]. 4th International Symposium on Algorithmic Number Theory, Netherlands, 2000: 85-112. doi: 10.1007/10722028_4. SCHNORR C and EUCHNER M. Lattice basis reduction: Improved practical algorithms and solving subset sum problems[J]. Mathematical Programming, 2006, 66(1-3): 68-85. doi: 10.1007/bf01581144. -
計(jì)量
- 文章訪問(wèn)數(shù): 1075
- HTML全文瀏覽量: 120
- PDF下載量: 242
- 被引次數(shù): 0