基于短時(shí)稀疏時(shí)頻分布的雷達(dá)目標(biāo)微動(dòng)特征提取及檢測方法
doi: 10.11999/JEIT161040 cstr: 32379.14.JEIT161040
-
1.
(海軍航空工程學(xué)院電子信息工程系 煙臺 264001) ②(海軍航空工程學(xué)院信息融合研究所 煙臺 264001)
國家自然科學(xué)基金(61501487, 61401495, U1633122, 61471382, 61531020);山東省自然科學(xué)基金(2015ZRA06052);航空基金(20162084005, 20162084006, 20150184003);泰山學(xué)者和中國科協(xié)青年人才托舉工程專項(xiàng)經(jīng)費(fèi)資助
Radar Micro-Doppler Signature Extraction and Detection via Short-time Sparse Time-frequency Distribution
-
1.
(Department of Electronic and Information Engineering, Naval Aeronautical and Astronautical University,Yantai 264001, China)
-
2.
(Institute of Information Fusion, Naval Aeronautical and Astronautical University, Yantai 264001, China)
The National Natural Science Foundation of China (61501487, 61401495, U1633122, 61471382, 61531020), The Natural Science Foundation of Shandong Province (2015ZRA 06052), The Aeronautical Science Foundation of China (20162084005, 20162084006, 20150184003), The Special Funds of Taishan Scholars of Shandong and Young Elite Scientist Program of CAST
-
摘要: 為有效提高強(qiáng)雜波及目標(biāo)復(fù)雜運(yùn)動(dòng)特性條件下的雷達(dá)動(dòng)目標(biāo)探測能力,該文結(jié)合時(shí)頻分布(TFD)類動(dòng)目標(biāo)檢測和稀疏表示方法的優(yōu)勢,建立了短時(shí)稀疏TFD(ST-STFD)原理框架,提出短時(shí)稀疏傅里葉變換(ST-SFT)和短時(shí)稀疏分?jǐn)?shù)階傅里葉變換(ST-SFRFT)雷達(dá)動(dòng)目標(biāo)檢測方法,并應(yīng)用于海上目標(biāo)微動(dòng)特征提取及檢測中。實(shí)測雷達(dá)數(shù)據(jù)驗(yàn)證表明,該方法在時(shí)間-稀疏域能夠?qū)崿F(xiàn)時(shí)變信號的高分辨低復(fù)雜度時(shí)頻表示,具有運(yùn)算效率高、時(shí)頻分辨好、抗雜波等優(yōu)點(diǎn),為進(jìn)一步提升雷達(dá)雜波抑制和動(dòng)目標(biāo)檢測能力提供了新的思路和途徑。
-
關(guān)鍵詞:
- 動(dòng)目標(biāo)檢測 /
- 海上目標(biāo) /
- 微多普勒 /
- 時(shí)頻分布 /
- 稀疏表示
Abstract: In order to effectively improve radar detection ability of moving target under the conditions of strong clutter and complex motion characteristics, the principle framework of Short-Time sparse Time-Frequency Distribution (ST-TFD) is established combing the advantages of TFD-based moving target detection and sparse representation. Then, Short-Time Sparse Fourier Transform (ST-SFT) and Short-Time Sparse FRactional Fourier transform (ST-SFRFT)-based radar moving target detection methods are proposed and applied to micro-Doppler signature extraction and detection of marine target. It is verified by real radar data that the proposed methods can achieve high-resolution and low complexity TFD of time-varying signal in time-sparse domain, and has the advantages of high efficiency, good time-frequency resolution, anti-clutter, and so on. It can be expected that the proposed methods can provide a novel solution for radar clutter suppression and moving target detection. -
SIMON W, LUKE R, STEPJEN B, et al. Doppler spectra of medium grazing angle sea clutter; Part 1: Characterisation[J]. IET Radar, Sonar Navigation, 2016, 10(1): 24-31. doi: 10.1049/iet-rsn.2015.0148. XU Jia, PENG Yingning, XIA Xiang-gen, et al. Focus- before-detection radar signal processing (I): Challenges and methods[J]. IEEE Aerospace and Electronic Systems Magazine. GUAN Jian, CHEN Xiaolong, HUANG Yong, et al. Adaptive fractional Fourier transform-based detection algorithm for moving target in heavy sea clutter[J]. IET Radar, Sonar Navigation, 2012, 6(5): 389-401. doi: 10.1049/iet-rsn.2011. 0030. CHEN V C, LI Fayin, HO Shenshyang, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2-21. doi: T-AES/42/1/870577. 陳小龍, 關(guān)鍵, 何友. 微多普勒理論在海面目標(biāo)檢測中的應(yīng)用及展望[J]. 雷達(dá)學(xué)報(bào), 2013, 2(1): 123-134. doi: 10.3724/SP.J. 1300.2013.20102. CHEN Xiaolong, GUAN Jian, and HE You. Applications and prospect of micro-motion theory in the detection of sea surface target[J]. Journal of Radars, 2013, 2(1): 123-134. doi: 10.3724/SP.J.1300.2013.20102. CHEN Xiaolong, GUAN Jian, LI Xiuyou, et al. Effective coherent integration method for marine target with micromotion via phase differentiation and Radon-Lv's distribution[J]. IET Radar, Sonar Navigation (Special Issue: Micro-Doppler), 2015, 9(9): 1284-1295. doi: 10.1049 /iet-rsn. 2015.0100. CHEN Xiaolong, DONG Yonglong, HUANG Yong, et al. Detection of marine target with quadratic modulated frequency micromotion signature via morphological component analysis[C]. 2015 3rd International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing (CoSeRa), Pisa, Italy, 2015, 209-213. doi: 10.1109/CoSeRa.2015.7330294. GHOLAMI A. Sparse timefrequency decomposition and some applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3598-3604. doi: 10.1109/TGRS. 2012.2220144. LIU Shengheng, SHAN Tao, TAO Ran, et al. Sparse discrete fractional Fourier transform and its applications[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6582-6595. doi: 10.1109/TSP.2014.2366719. 陳小龍, 董云龍, 李秀友, 等. 海面剛體目標(biāo)微動(dòng)特征建模及特性分析[J]. 雷達(dá)學(xué)報(bào), 2015, 4(6): 630-638. doi: 10.12000 /JR15079. CHEN Xiaolong, DONG Yunlong, LI Xiuyou, et al. Modeling of micromotion and analysis of properties of rigid marine targets[J]. Journal of Radars, 2015, 4(6): 630638. doi: 10. 12000/JR15079. DE WIND H J, CILLIERS J E, and HERSELMAN P L. Dataware: Sea clutter and small boat radar reflectivity databases[J]. IEEE Signal Processing Magazine, 2010, 27(2): 145-148. doi: 10. 1109/MSP.2009.935415. CHEN S S, DONOHO D L, and SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129-159. doi: 10.1137/S003614450037906X. GILBERT A C, INDYK P, IWEN M, et al. Recent developments in the sparse Fourier transform: A compressed Fourier transform for big data[J]. IEEE Signal Processing Magazine, 2014, 31(5): 91-100. doi: 10.1109/MSP.2014. 2329131. CHEN Xiaolong, GUAN Jian, BAO Zhonghua, et al. Detection and extraction of target with micro-motion in spiky sea clutter via short-time fractional Fourier transform [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002-1018. doi: 10.1109/TGRS.2013.2246574. -
計(jì)量
- 文章訪問數(shù): 1906
- HTML全文瀏覽量: 341
- PDF下載量: 846
- 被引次數(shù): 0