基于分?jǐn)?shù)階傅里葉變換的窄帶雷達(dá)飛機(jī)目標(biāo)回波特征提取方法
doi: 10.11999/JEIT161035 cstr: 32379.14.JEIT161035
國(guó)家自然科學(xué)基金(61271024, 61322103),高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金博士生導(dǎo)師類基金(20130203110013),陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃(2015JZ016)
Feature Extraction Method of Narrow-band Radar Airplane Signatures Based on Fractional Fourier Transform
The National Natural Science Foundation of China (61271024, 61322103), The Foundation for Doctoral Supervisor of China (20130203110013), The Natural Science Foundation of Shaanxi Province (2015JZ016)
-
摘要: 該文研究了常規(guī)窄帶雷達(dá)體制下,利用分?jǐn)?shù)階傅里葉變換擴(kuò)展特征域,從而解決直升機(jī)、螺旋槳飛機(jī)和噴氣式飛機(jī)3類飛機(jī)目標(biāo)回波分類中的特征提取問(wèn)題。在現(xiàn)代戰(zhàn)場(chǎng)中,直升機(jī)、螺旋槳飛機(jī)和噴氣式飛機(jī)具有不同的機(jī)動(dòng)性能,并各自承擔(dān)著重要的任務(wù)。因此,實(shí)現(xiàn)這3類飛機(jī)的分類具有重大的意義。該文針對(duì)3類飛機(jī)目標(biāo)分類的傳統(tǒng)特征數(shù)目少,包含信息量有限,導(dǎo)致分類性能不夠好的問(wèn)題,基于現(xiàn)有的特征提取方法引入分?jǐn)?shù)階傅里葉變換(Fractional Fourier Transform, FrFT),在經(jīng)過(guò)FrFT后的分?jǐn)?shù)域提取3類飛機(jī)目標(biāo)回波的分?jǐn)?shù)階特征,彌補(bǔ)傳統(tǒng)特征的不足。并利用線性相關(guān)向量機(jī)(Relevance Vector Machine, RVM)的特征選擇功能對(duì)提取的分?jǐn)?shù)階特征進(jìn)行特征選擇并分類?;诜抡婧蛯?shí)測(cè)數(shù)據(jù)的實(shí)驗(yàn)結(jié)果證明該文提出的分?jǐn)?shù)階特征的分類性能較傳統(tǒng)時(shí)域、多普勒域特征有較大提升。
-
關(guān)鍵詞:
- 窄帶雷達(dá) /
- 分?jǐn)?shù)階傅里葉變換 /
- 特征提取 /
- 特征選擇 /
- 目標(biāo)分類 /
- 噴氣引擎調(diào)制
Abstract: This paper studies on the feature extraction methods for the classification of helicopter, propeller-driven aircraft, and turbojet using a conventional narrow-band radar system. In the modern battlefield, the helicopter, propeller aircraft and jet aircraft with different motor performances each bear an important task. But the classification performance of the traditional features for the three types of aircraft target classification is not good enough, so the Fractional Fourier Transform (FrFT) is introduced. Based on the existing feature extraction method, the fractional order features of three kinds of aircraft targets are extracted from the fractional domain after FrFT to extend feature domain. Then, the effective features are selected from all extracted features and the classification of the three categories via linear Relevance Vector Machine (RVM) is realized. The experiments demonstrate that the proposed fractional features can improve the classification performance in comparison with some existing features from the time-domain and Doppler-frequency domain. -
CHEN V C. Radar signatures of rotor blades[J]. SPIE, 2001, 4391(1): 63-70. doi: 10.1117/12.421231. YONG Y W, HOON P J, WOO B J, et al. Automatic feature extraction from jet engine modulation signals based on an image processing method[J]. IET Radar, Sonar Navigation, 2015, 9(7): 783-789. doi: 10.1049/iet-rsn.2014. 0281. 杜蘭, 李林森, 李瑋璐, 等. 基于時(shí)域回波相關(guān)性特征的飛機(jī)目標(biāo)分類方[J]. 雷達(dá)學(xué)報(bào), 2015, 4(6): 621-629. doi: 10.12000 /JR15117. DU Lan, LI Linsen, LI Weilu, et al. Aircraft target classification based on correlation features from time domain echoes[J]. Journal of Radars, 2015, 4(6): 621-629. doi: 10. 12000/JR15117. 陳娟. 基于多特征融合的雷達(dá)目標(biāo)識(shí)別[D]. [碩士論文], 西安電子科技大學(xué), 2010. CHEN Juan. Radar target recognition based on multi- features fusion[D]. [Master dissertation], Xidian University, 2010. 陶然, 齊林, 王越. 分?jǐn)?shù)階Fourier變換的原理與應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2004: 3-4, 31-45. TAO Ran, QI Lin, and WANG Yue. Principle and Application of Fractional Fourier Transform[M]. Beijing: Tsinghua University Press, 2004: 3-4, 31-45. OZAKTAS H M and BARSHAN B. Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to LFM and wavelet transforms[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 1993, 11(2): 547-559. doi: 10.1364/JOSAA.11. 000547. PENG Hsiaowei, CHANG Hsuanting, and LIN Chingchou. 2-D linear frequency modulation signal separation using fractional Fourier transform[C]. International Symposium on Computer Consumer and Control, Xian, 2016: 755-758. doi: 10.1109/IS3C.2016.193. LI Y B, ZHANG F, KANG X J, at al. Image encryption based on the iterative fractional Fourier transform and a novel pixel scrambling technique[C]. IET International Radar Conference, Hangzhou, 2015: 1-6. doi: 10.1049/cp.2015.1036. 冉啟文. 小波變換與分?jǐn)?shù)階傅里葉變換理論及應(yīng)用[M]. 哈爾濱: 哈爾濱工業(yè)大學(xué)出版社, 2001: 1-7. RAN Qiwen. Theory and Application of Wavelet Transform and Fractional Fourier Transform[M]. Harbin: Harbin Institute of Technology Press, 2001: 1-7. GUAN J, CHEN X L, HUANG Y, at al. Adaptive fractional Fourier transform based detection algorithm for moving target in heavy sea clutter[J]. IET Radar, Sonar Navigation, 2012, 6(5): 389-401. doi: 10.1049/iet-rsn.2011. 0030. 王亞星. 基于分?jǐn)?shù)階傅里葉變換的人臉識(shí)別[D]. [碩士論文], 鄭州大學(xué), 2015 WANG Yaxing. Human facial expression recognition based on fractional Fourier transform[D]. [Master dissertation], Zhengzhou University, 2015. OZAKTAS H M, ARIKAN O, KUTAY M A, et al. Digital computation of the fractional Fourier transform[J]. IEEE Transactons on Signal Processing, 1996, 44(9): 2141-2150. 李志鵬, 馬田香, 杜蘭, 等. 在雷達(dá)HRRP識(shí)別中多特征融合多類分類器設(shè)計(jì)[J]. 西安電子科技大學(xué)學(xué)報(bào), 2013, 40(1): 111-117. doi: 10.3969/j.issn.1001-2400.2013.01.020. LI Zhipeng, MA Tianxiang, DU Lan, et al. Multi-class classifier design for feature fusion in radar HRRP recognition [J]. Journal of Xidian University , 2013, 40(1): 111-117. doi: 10.3969/j.issn.1001-2400.2013.01.020. 王寶帥, 杜蘭, 劉宏偉. 基于經(jīng)驗(yàn)?zāi)B(tài)分解的空中飛機(jī)目標(biāo)分類[J]. 電子與信息學(xué)報(bào), 2012, 34(9): 2116-2121. doi: 10. 3724/SP.J.1146.2012.00147. WANG Baoshuai, DU Lan, and LIU Hongwei. Aircraft classification based on empirical mode decomposition[J]. Journal of Electronics Information Technology, 2012, 34(9): 2116-2121. doi: 10.3724/SP.J.1146.2012.00147. MARTIN J and MULGREW B. Analysis of the theoretical radar return signal from aircraft propeller blades[C]. IEEE International Conference Radar, New York, USA, 1990: 569-572. BELL M R and GRUBBS R A. JEM modeling and measurement for radar target identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 73-87. doi: 10.1109/7.249114. -
計(jì)量
- 文章訪問(wèn)數(shù): 1795
- HTML全文瀏覽量: 144
- PDF下載量: 305
- 被引次數(shù): 0