基于橢圓模型與改進NLCS的一站固定式大基線雙站SAR成像算法
doi: 10.11999/JEIT161016 cstr: 32379.14.JEIT161016
基金項目:
國家自然科學基金(61301248, 61271214),中國航天科技創(chuàng)新基金
Improved NLCS Algorithm Based on Ellipse Model for One-stationary Bistatic SAR with Large Baseline
Funds:
The National Natural Science Foundation of China (61301248, 61271214), Chinese Innovation Foundation of Aerospace Science and Technology
-
摘要: 在一站固定式雙站SAR成像處理中,該文針對距離-方位2維空變描述不夠準確導致成像性能迅速下降的問題,提出一種新的橢圓模型精確描述一站固定式大基線雙站SAR的距離-方位空變特性,并基于此推導了改進的非線性調頻變標(NLCS)成像算法。在距離向,首先利用相位去斜完成距離去走動和多普勒中心矯正,接著對剩余距離單元徙動和距離方位高次耦合項進行了去除處理。在方位向,根據一站固定式雙站SAR的2維空變特性,提出了一種用于描述回波距離-方位空變特性的橢圓模型,基于該模型對空變的回波方位調頻率進行了分析,并重新推導NLCS算法的方位變標函數和方位壓縮系數。理論分析與仿真結果證明,所提出的模型不僅揭示了一站固定式大基線雙站SAR數據的2維空變特性,而且對回波的距離-方位空變給出了更精確的解析式描述,使得基于該模型改進的NLCS算法可以獲得更好的成像處理效果。Abstract: In One-Stationary Bistatic Synthetic Aperture Radar (OS-BiSAR) imaging, imprecise description of 2-D range-azimuth space-variant property usually leads to deterioration of final SAR image rapidly. In order to solve this issue, a new ellipse model is proposed to precisely describe range-azimuth space-variant property of OS-BiSAR with large baseline, and an improved Non-Linear Chirp Scaling (NLCS) algorithm is also derived based on this model. First, a phase de-ramp operation is performed to remove the linear Range Cell Migration (RCM) and Doppler centroid in range frequency domain. Then, the residual RCM and high order range-azimuth coupling terms are removed. Thirdly, a new ellipse model is established to describe range-azimuth space-variant property of OS-BiSAR, and then the azimuth frequency modulation rate of space-variant echo is analyzed. Moreover, azimuth scaling function of NLCS and azimuth compression factors are re-derived. Theoretical analysis and simulation results show that the proposed model not only reveals the property of 2-D azimuth-variant in OS-BiSAR, but also provides a precise analytical expression to depict the 2-D range-azimuth space-variant property of OS-BiSAR. Furthermore, simulation results validate that the improved NLCS algorithm based on this new model has high imaging performance.
-
Key words:
- SAR imaging /
- Bistatic SAR /
- One-stationary /
- Non-Linear Chirp Scaling (NLCS) /
- Ellipse model
-
楊建宇. 雙基地合成孔徑雷達技術[J]. 電子科技大學學報, 2016, 45(4): 482-501. doi: 10.3969/J.issn.1001-0548.2016.04. 001. YANG J Y. Bistatic synthetic aperture radar technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482-501. doi: 10.3969/J.issn.1001-0548. 2016.04.001. 曾濤. 雙基地合成孔徑雷達發(fā)展現狀與趨勢分析[J]. 雷達學報, 2012, 1(4): 329-341. doi: 10.3724/SP.J.1300.2012.20093. ZENG T. Bistatic SAR: State of the art and development trend[J]. Journal of Radars, 2012, 1(4): 329-341. doi: 10. 3724/SP.J.1300.2012.20093. 孟自強, 李亞超, 邢孟道, 等. 基于斜視等效的彈載雙基前視SAR相位空變校正方法[J]. 電子與信息學報, 2016, 38(3): 613-621. doi: 10.11999/JEIT150782. MENG Ziqiang, LI Yachao, XING Mengdao, et al. Phase space-variance correction method for missile-borne bistatic forward-looking SAR based on equivalent range equation[J]. Journal of Electronics Information Technology, 2016, 38(3): 613-621. doi: 10.11999/JEIT150782. LI Z Y, WU J J, HUANG Y L, et al. Ground-moving target imaging and velocity estimation based on mismatched compression for bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3277-3291. doi: 10.1109/TGRS.2016.2514494. CHEN S, YUAN Y, ZHANG S N, et al. A new imaging algorithm for forward-looking missile-borne bistatic SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1543-1552. doi: 10.1109/JSTARS.2015.2507260. ZHANG H, DENG Y K, WANG R, et al. Spaceborne/ stationary bistatic SAR imaging with TerraSAR-X as an illuminator in staring-spotlight mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5203-5216. doi: 10.1109/TGRS.2016.2558294. WANG R, WANG W, SHAO Y F, et al. First bistatic demonstration of digital beamforming in elevation with TerraSAR-X as an illuminator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 842-849. doi: 10.1109/TGRS.2015.2467176. ZENG T, HU C, WU L X, et al. Extended NLCS algorithm of BiSAR systems with a squinted transmitter and a fixed receiver: Theory and experimental confirmation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5019-5030. doi: 10.1109/TGRS.2013.2276048. QIU X L, HU D H, and DING C B. An improved NLCS algorithm with capability analysis for one-stationary BiSAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3179-3186. doi: 10.1109/TGRS.2008.921569. WONG F H and YEO T S. New applications of nonlinear chirp scaling in SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 946-953. doi: 10.1109/36.921412. WONG F H, CUMMING I G, and NEO Y L. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2493-2505. doi: 10.1109/TGRS.2008. 917599. LI D, LIAO G S, WANG W, et al. Extended azimuth nonlinear chirp scaling algorithm for bistatic SAR processing in high-resolution highly squinted mode[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1134-1138. doi: 10.1109/LGRS.2013.2288292. WANG W, LIAO G S, LI D, et al. Focus improvement of squint bistatic SAR data using azimuth nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 229-233. doi: 10.1109/LGRS.2013.2254106. LI Z Y, WU J J, YI Q Y, et al. Bistatic forward-looking SAR ground moving target detection and imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1000-1016. doi: 10.1109/TAES.2014.130539. NEO Y L, WONG F H, and CUMMING I G. A two- dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93-96. doi: 10.1109/LGRS.2006.885862. -
計量
- 文章訪問數: 1361
- HTML全文瀏覽量: 120
- PDF下載量: 273
- 被引次數: 0